Double-Satellite Formation Constellation States Determination With GPS and
-
摘要: 为提高状态确定的精度,借鉴AFF技术引入一种辅助手段--类似GPS的伪距和载波相位测距技术(简称类GPS测距技术).它的伪码码元和载波相位波长比GPS的更短,因而可获得更高精度的相对测量信息.针对对地观测的双星编队星座的状态确定任务,建立了联合GPS和类GPS测距技术进行编队星座状态整体确定的数学模型,并快速同时解算出GPS星间单差模糊度和类GPS星内单差模糊度,最后进行了数学仿真.仿真结果表明,编队状态的精度有明显提高,其中相对位置精度为10-3m,姿态角精度为10-4rad.仿真证明该方法有效.
-
关键词:
- GPS 类GPS测距 /
- 双星编队星座 /
- 状态确定 /
- 整周模糊度
Abstract: The states determination of formation constellation is an important research task. CPS is a chief means, which uses two observational signals: pseudo-range with an accuracy of 10 m, and carrier phase with an accuracy of 10^-3 m. Benefiting from AFF (Autonomous Formation Flying) technology, an assistant means "CPS-like" ranging technology is introduced to improve the states results, which can provide more accurate relative measurement information that are owed to shorter pseudo-code length and wavelength of carrier phase comparing to that of CPS technology. The states determination problem with double-satellite formation constellation for the earth-observation purpose is dicussed. The mathematical model combines "CPS-like" ranging technology with CPS is developed. Single GPS inter-satellite integer ambiguity and single "GPS-like" intra-satellite integer ambiguity are quickly and simultaneously initialized. Finally, these models above mentioned are simulated. The results of our tests indicate the formation states are improved significantly, with the accuracy of relative position reaching 10^-3 m and the accuracies of absolute attitudes reaching 10^-4 rad. The method proves to be valid through simulation. -

计量
- 文章访问数: 2553
- HTML全文浏览量: 24
- PDF下载量: 1160
- 被引次数: 0