留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同太阳活动条件下电离层形态对估算GPS系统硬件延迟的影响

金亚奇 张东和 刘玉梅 郝永强 肖佐

金亚奇, 张东和, 刘玉梅, 郝永强, 肖佐. 不同太阳活动条件下电离层形态对估算GPS系统硬件延迟的影响[J]. 空间科学学报, 2013, 33(4): 427-435. doi: 10.11728/cjss2013.04.427
引用本文: 金亚奇, 张东和, 刘玉梅, 郝永强, 肖佐. 不同太阳活动条件下电离层形态对估算GPS系统硬件延迟的影响[J]. 空间科学学报, 2013, 33(4): 427-435. doi: 10.11728/cjss2013.04.427
JIN Yaqi, ZHANG Donghe, LIU Yumei, HAO Yongqiang, XIAO Zuo. Influence of Ionospheric Variability in Solar Maximum and Solar Minimum Period on the Stability of Estimated GPS Instrumental Biases[J]. Journal of Space Science, 2013, 33(4): 427-435. doi: 10.11728/cjss2013.04.427
Citation: JIN Yaqi, ZHANG Donghe, LIU Yumei, HAO Yongqiang, XIAO Zuo. Influence of Ionospheric Variability in Solar Maximum and Solar Minimum Period on the Stability of Estimated GPS Instrumental Biases[J]. Journal of Space Science, 2013, 33(4): 427-435. doi: 10.11728/cjss2013.04.427

不同太阳活动条件下电离层形态对估算GPS系统硬件延迟的影响

doi: 10.11728/cjss2013.04.427
基金项目: 国家自然科学基金项目(41174134, 41274156)和国家重点基础研究发展计划项目(2011CB811405)共同资助
详细信息
    作者简介:

    张东和, zhangdh@pku.edu.cn

  • 中图分类号: P353

Influence of Ionospheric Variability in Solar Maximum and Solar Minimum Period on the Stability of Estimated GPS Instrumental Biases

  • 摘要: 利用两个中纬度台站GPS观测数据提取的GPS卫星硬件延迟,分析了不同太阳活动情况下估算的硬件延迟稳定性和统计特征,结合同期电离层观测数据,研究了电离层状态对硬件延迟估算结果的影响.研究结果表明,基于太阳活动高年(2001年)GPS观测数据估算的硬件延迟稳定性要低于太阳活动低年GPS观测数据的估算结果,利用2001年GPS数据估算的卫星硬件延迟年标准偏差(RMS)平均值约为1TECU,而2009年GPS数据估算的卫星硬件延迟年标准偏差平均值约为0.8TECU.通过对2001年和2009年北京地区电离层F2层最大电子密度(NmF2)变化性分析,结合GPS硬件延迟估算方法对电离层时空变化条件的要求,认为硬件延迟稳定性与太阳活动强度的联系是由不同太阳活动条件下电离层变化的强度差异引起的.

     

  • [1] Coco D S, Coker C, Dahlke S R, Clynch J R. Variability of GPS satellite differential group delay biases[J]. IEEE T. Aero. Elec. Sys., 1991, 27, 931-938
    [2] Lanyi G E, Roth T. A comparison of mapped and measured total ionospheric electron content using Global Positioning System and beacon satellites observations[J]. Radio Sci., 1988, 23, 483-492
    [3] Vladimer J A, Lee M C, Doherty P H, et al. Comparisons of TOPEX and Global Positioning System total electron content measurements at equatorial anomaly latitudes[J]. Radio Sci., 1997, 32, 2209-2220
    [4] Ho C M, Wilson B D, Mannucci A J, Lindqwister U J, Yuan D N. A comparative study of ionospheric total electron content measurements using global ionospheric maps of GPS, TOPEX radar, and the Bent model[J]. Radio Sci., 1997, 32, 1499-1521
    [5] Arikan F, Nayir H, Sezen U, Arikan O. Estimation of single station interfrequency receiver bias using GPS-TEC[J]. Radio Sci., 2008, 43, RS4004, doi: 10.1029/2007RS003785
    [6] Brunini C, Meza A, Bosch W. Temporal and spatial variability of the bias between TOPEX- and GPS-derived total electron content[J]. J. Geodesy, 2005, 79, 175-188
    [7] Jee G, Lee H B, Kim Y H, Chung J K, Cho J. Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: Ionospheric perspective[J]. J. Geophys. Res., 2010, 115, A10319, doi: 10.1029/2010JA015432
    [8] Liu Z Z, Gao Y. Ionospheric TEC predictions over a local area GPS reference network[J]. GPS Solut., 2004, 8, 23-29
    [9] Ma G, Maruyama T. Derivation of TEC and estimation of instrumental biases from GEONET in Japan[J]. Ann. Geophys., 2003, 21, 2083C2093, doi: 10.5194/angeo-21-2083-2003
    [10] Sardon E, Zarraoa N. Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases?[J]. Radio Sci., 1997, 32, 1899-1910
    [11] Rishbeth H, Mendilloa M. Patterns of F2-layer variability[J]. J. Atmos. Solar-Terr. Phys., 2001, 63, 1661-1680
    [12] Zhang W, Zhang D H, Xiao Z. The influence of geomagnetic storms on the estimation of GPS instrumental biases[J]. Ann. Geophys., 2009, 27, 1613-1623
    [13] Zhang D H, Zhang W, Li Q, Shi L Q, Hao Y Q, Xiao Z. Accuracy analysis of the GPS instrumental bias estimated from observations in middle and low latitudes[J]. Ann. Geophys., 2010, 28, 1571-1580
    [14] Liu L, Wan W, Le H. Solar activity effects of the ionosphere: A brief review[J]. Chin. Sci. Bull., 2011, 56: 1202-1211
    [15] Liu L, Wan W, Ning B, Pirog O M, Kurkin V I. Solar activity variations of the ionospheric peak electron density[J]. J. Geophys. Res., 2006, 111, A08304, doi: 10.1029/2006JA011598
    [16] Hovath I, Essex E. Using observations from the GPS and TOPEX satellites to investigate night-time TEC enhancements at mid-latitudes in the southern hemisphere during a low sunspot number period[J]. J. Atmos. Sol.-Terr. Phys., 2000, 62:371-391
    [17] Mannucci A, Wilson B, Yuan D, Ho C, Lindqwister U, Runge T. A global mapping technique for GPS-derived ionospheric total electron content measurements[J]. Radio Sci., 1998, 33(3):565-582
  • 加载中
计量
  • 文章访问数:  2304
  • HTML全文浏览量:  28
  • PDF下载量:  1134
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-08
  • 修回日期:  2013-02-10
  • 刊出日期:  2013-07-15

目录

    /

    返回文章
    返回