留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间毛细管式蛋白质结晶室样品加载技术研究

李娜 张贺桥 尚桂军 聂荣鑫 马建华 仓怀兴

李娜, 张贺桥, 尚桂军, 聂荣鑫, 马建华, 仓怀兴. 空间毛细管式蛋白质结晶室样品加载技术研究[J]. 空间科学学报, 2013, 33(4): 441-447. doi: 10.11728/cjss2013.04.441
引用本文: 李娜, 张贺桥, 尚桂军, 聂荣鑫, 马建华, 仓怀兴. 空间毛细管式蛋白质结晶室样品加载技术研究[J]. 空间科学学报, 2013, 33(4): 441-447. doi: 10.11728/cjss2013.04.441
LI Na, ZHANG Heqiao, SHANG Guijun, NIE Rongxin, MA Jianhua, CANG Huaixing. Study on Loading Techniques of Protein Species into Space Crystallization Chamber[J]. Chinese Journal of Space Science, 2013, 33(4): 441-447. doi: 10.11728/cjss2013.04.441
Citation: LI Na, ZHANG Heqiao, SHANG Guijun, NIE Rongxin, MA Jianhua, CANG Huaixing. Study on Loading Techniques of Protein Species into Space Crystallization Chamber[J]. Chinese Journal of Space Science, 2013, 33(4): 441-447. doi: 10.11728/cjss2013.04.441

空间毛细管式蛋白质结晶室样品加载技术研究

doi: 10.11728/cjss2013.04.441
基金项目: 载人航天工程应用系统项目资助
详细信息
    作者简介:

    仓怀兴, hxcang@ibp.ac.cn

  • 中图分类号: V527

Study on Loading Techniques of Protein Species into Space Crystallization Chamber

  • 摘要: 采用X-elax射线衍射技术研究蛋白质分子结构与功能的必要前提是获得高质量的蛋白质晶体.空间微重力环境是生长优质蛋白质晶体的理想场所.蛋白质样品的加载工艺对于空间蛋白质结晶实验的成效具有重要影响.针对为神舟八号飞船空间实验新研制的毛细管式空间蛋白质结晶室,结合样品加载基本流程,对加载工艺和伴随的气泡缺陷问题进行了系统和深入分析,确定了针头形状、毛细管封口质量和硅化效果、样品加载工具以及毛细管夹持方式等影响因素,并获得了实验测试验证.在此基础上,通过改进毛细管烧制工艺和样品加载工具,研制和使用专用毛细管夹具等措施,简化了蛋白质样品加载工艺,消除了气泡缺陷,提高了加载效率.新工艺的实施保证了空间实验任务的顺利完成.

     

  • [1] Littke W, John C. Protein single crystal growth under microgravity[J]. Science, 1984, 225: 203-204
    [2] DeLucas L J, Long M M, Moore K M, et al. Recent results and new hardware developments for protein crystal growth in microgravity[J]. J. Cryst. Growth, 1994, 135(1/2): 183-195
    [3] Bi Ruchang. Space crystal growth of proteins with domestic facility[J]. Chin. J. Space Sci., 1996, 16(3): 208-214. In Chinese (毕汝昌. 用国产装置进行的空间蛋 白质结晶实验[J]. 空间科学学报, 1996, 16(3): 208-214)
    [4] Lorber B. The crystallization of biological macromolecules under microgravity: a way to more accurate three-dimensional structures[J]. Biochim. Biophys. Acta, 2002, 1599: 1-8
    [5] Cang H X, Wang Y P, Han Y, Zhou J X, Bi R C. The space experiment of protein crystallization aboard the Chinese spacecraft SZ-3[J]. Microgr. Sci. Tech., 2003, 14: 13-16
    [6] Smirnova E A, Kislitsyn Y A, Sosfenov N I, et al. Protein crystal growth on the Russian segment of the International Space Station[J]. Crystallogr. Reports, 2009, 54(5): 901-911
    [7] Harm D L, Ruttley T M, Gish A. Research in Space: Facilities on the International Space Station[R], NASA, NP-2009-08-604-HQ, 2009
    [8] McPherson A, Malkin A J, Kuznetsov Y G, et al. The effects of microgravity on protein crystallization: evidence for concentration gradients around growing crystals[J]. J. Cryst. Growth, 1999, 196(2/3/4): 572-586
    [9] Lin H, Rosenberger F, Alexander J I D, et al. Convective-diffusive transport in protein crystal growth[J]. J. Cryst. Growth, 1995, 151(1/2): 153-162
    [10] Savino R, Monti R. Buoyancy and surface-tension-driven convection in hanging-drop protein crystallizer[J]. J. Cryst. Growth, 1996, 165(3): 308-318
    [11] McPherson A. Protein crystallization in the structural genomics era[J]. J. Struct. Funct. Genom., 2004, 5: 3-12
    [12] Blundell T L, Jhoti H, Abell C. High-throughput crystallography for lead discovery in drug design[J]. Nat. Rev. Drug Disc., 2002, 1: 45-54
    [13] Drenth J. Principles of Protein X-Ray Crystallography (3rd Edition). New York: Springer Science+Business Media, LLC, 2007
    [14] Bosch R, Lautenschlager P, Potthast L, et al. Experimental equipment for protein crystallization in μg facilities[J]. J. Cryst. Growth, 1992, 122: 310-316
    [15] Hilgenfeld R, Liesum A, Storm R, et al. Crystallization of two bacterial enzymes on an unmanned space station[J]. J. Cryst. Growth, 1992, 122: 330-336
    [16] Strong R K, Stoddard B L, Arrott A, et al. Long duration growth of protein crystals in microgravity aboard the MIR space station[J]. J. Cryst. Growth, 1992, 119: 200-214
    [17] Vergara A, Lorber B, Sauter C, et al. Lessons from crystals grown in the Advanced Protein Crystallisation Facility for conventional crystallisation applied to structural biology[J]. Biophys. Chem., 2005, 118: 102-112
    [18] Pletser V, Bosch R, Potthast L, et al. The Protein Crystallisation Diagnostics Facility (PCDF) on board ESA Columbus laboratory[J]. Microgr. Sci. Tech., 2009, 21: 269-277
    [19] Carter D C, Wright B, Miller T, et al. PCAM: a multi-user facility-based protein crystallization apparatus for microgravity[J]. J. Cryst. Growth, 1999, 196(2/3/4): 610-622
    [20] Carter D C, Wright B, Miller T, et al. Diffusion-controlled crystallization apparatus for microgravity (DCAM): flight and ground-based applications[J]. J. Cryst. Growth, 1999, 196(2/3/4): 602-609
    [21] Garcia-Ruiz J M, Gonzalez-Ramirez L A, Gavira J A, Otalora F. Granada Crystallisation Box: a new device for protein crystallisation by counter-diffusion techniques[J]. Acta Cryst. D Biol. Cryst., 2002, 58: 1638-1642
    [22] Tanaka H, Tsurumura T, Aritake K, et al. Improvement in the quality of hematopoietic prostaglandin D synthase crystals in a microgravity environment[J]. J. Synchr. Radiat., 2011, 18: 88-91
    [23] Kawajia M, Gamachea O, Hwang D H. Investigation of Marangoni and natural convection during protein crystal growth[J]. J. Cryst. Growth, 2003, 258: 420-430
    [24] Cang H X, Bi R C. Numerical studies on the pre-nucleation transport in the liquid/liquid diffusion crystallization of proteins[J]. J. Cryst. Growth, 1998, 194: 133-137
    [25] Cang H X, Bi R C. Infuence of gravity on post-nucleation transport in liquid/liquid diffusion chamber of protein crystallization[J]. J. Cryst. Growth, 2001, 232: 473-80
  • 加载中
计量
  • 文章访问数:  2525
  • HTML全文浏览量:  80
  • PDF下载量:  965
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-12
  • 修回日期:  2013-03-25
  • 刊出日期:  2013-07-15

目录

    /

    返回文章
    返回