留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电离层等效电流体系对行星际激波的响应研究

张青梅 孙天然 张佼佼 李传起 王赤

张青梅, 孙天然, 张佼佼, 李传起, 王赤. 电离层等效电流体系对行星际激波的响应研究[J]. 空间科学学报, 2013, 33(5): 486-493. doi: 10.11728/cjss2013.05.486
引用本文: 张青梅, 孙天然, 张佼佼, 李传起, 王赤. 电离层等效电流体系对行星际激波的响应研究[J]. 空间科学学报, 2013, 33(5): 486-493. doi: 10.11728/cjss2013.05.486
Zhang Qingmei, Sun Tianran, Zhang Jiaojiao, Li Chuanqi, Wang Chi. Response of the Ionospheric Equivalent Current Systems to Interplanetary Shocks[J]. Journal of Space Science, 2013, 33(5): 486-493. doi: 10.11728/cjss2013.05.486
Citation: Zhang Qingmei, Sun Tianran, Zhang Jiaojiao, Li Chuanqi, Wang Chi. Response of the Ionospheric Equivalent Current Systems to Interplanetary Shocks[J]. Journal of Space Science, 2013, 33(5): 486-493. doi: 10.11728/cjss2013.05.486

电离层等效电流体系对行星际激波的响应研究

doi: 10.11728/cjss2013.05.486
基金项目: 国家重点基础研究发展计划项目(2012CB825602);国家自然科学基金项目(41231067)和国家重点实验室专项基金项目共同资助
详细信息
    作者简介:

    孙天然, E-mail: trsun@spaceweather.ac.cn

  • 中图分类号: P353

Response of the Ionospheric Equivalent Current Systems to Interplanetary Shocks

  • 摘要: 行星际激波是导致地球磁层-电离层系统发生扰动的重要原因之一,其可以通过对磁层-电离层系统电流体系的改变来影响地磁变化.本文采用全球三维磁流体力学数值模拟方法,分析了行星际激波作用下电离层等效电流体系的即时响应.模拟结果表明,在激波作用下伴随着异常场向电流对的产生,电离层在午前午后出现一对反向的等效电流涡.这对涡旋一边向极侧和夜侧运动,一边经历强度增强和减弱直至消失的过程.激波过后等效电流体系图像逐渐演化为激波下游行星际条件控制的典型图像.这个响应过程与行星际激波强度有关,激波强度越强,则反向的等效电流涡旋强度越大,寿命也就越短.

     

  • [1] Wang Chi. MHD simulations on the interaction of the solar wind with the magnetosphere[J]. Chin. J. Space Sci., 2011, 31(4):413-428. In Chinese (王赤. 太阳风-磁层 相互作用的磁流体力学数值模拟研究. 空间科学学报, 2011, 31(4):413-428)
    [2] Yao Li, Liu Zhenxing, Zuo Pingbing, et al. Compression Effects of Interplanetary Shock to the Magnetosphere[J]. Chin. J. Space Sci., 2010, 30(2):113-120. In Chinese (姚丽, 刘振兴, 左平兵, 等. 行星际激波对地球磁层的压缩效应分析[J]. 空间科学学报, 2010, 30(2):113-120)
    [3] Wang C, Sun T R, Guo X C, Richardson J D. Case study of nightside magnetospheric magnetic field response to interplanetary shocks[J]. J. Geophys. Res., 2010, 115, A10247, doi: 10.1029/2010JA015451
    [4] Sun T R, Wang C, Li H, Guo X C. Nightside geosynchronous magnetic field response to interplanetary shocks: Model results[J]. J. Geophys. Res., 2011, 116, A04216, doi: 10.1029/2010JA016074.
    [5] Sun T R, Wang C, Wang Y. Different B_z response regions in the nightside magnetosphere after the arrival of an interplanetary shock: Multipoint observations compared with MHD simulations[J]. J. Geophys. Res., 2012, 117, A05227, doi: 10.1029/2011JA017303
    [6] Guo Xiaocheng, Hu Youqiu. Response of Earth's ionosphere to interplanetary shocks[J]. Chin. J. Geophys., 2007, 50(4):1-7. In Chinese (郭孝城, 胡友秋. 地球极区电离层 对行星际激波的响应[J]. 地球物理学报, 2007, 50(4):1-7)
    [7] Fujita S, Tanaka T, Kikuchi T, Fujimoto K, Hosokawa K, Itonaga M. A numerical simulation of the geomagnetic sudden commencement: 1. Generation of the field-aligned current associated with the preliminary impulse[J]. J. Geophys. Res., 2003, 108(A12):1416, doi: 10.1029/2002JA009407
    [8] Kataoka R, Fukunishi H, Fujita S, Tanaka T, Itonaga M. Transient response of the Earth's magnetosphere to a localized density pulse in the solar wind: Simulation of traveling convection vortices[J]. J. Geophys. Res., 2004, 109, A03204, doi: 10.1029/2003JA010287
    [9] Yu Y, Ridley A J. The response of the magnetosphere-ionosphere system to a sudden dynamic pressure enhancement under southward IMF conditions[J]. Ann. Geophys., 2009, 27:4391-4407
    [10] Ridley A J, De Zeeuw D L, Manchester W B, Hansen K C. The magnetospheric and ionospheric response to a very strong interplanetary shock and coronal mass ejection[J]. Adv. Space Res., 2006, 38:263-272
    [11] Araki T. A physical model of the geomagnetic sudden commencement[G]//Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves. Washington D C: AGU, 1994. 183-200
    [12] Wang C, Zhang J J, Tang B B, Fu S Y. Comparison of equivalent current systems for the substorm event of 8 March 2008 derived from the global PPMLR-MHD model and the KRM algorithm[J]. J. Geophys. Res., 2011, 116, A07207, doi: 10.1029/2011JA016497
    [13] Moretto T, Ridley A J, Engebretson M J, Rasmussen O. High-latitude ionospheric response to a sudden impulse event during northward IMF conditions[J]. J. Geophys. Res., 2000, 105(A2):2521-2531
    [14] Nagata T, Abe S. Notes on the distribution of SC in high latitudes[J]. Rep. Ionos. Res. Jpn., 1955, 9:33-44
    [15] Hu Youqiu, Guo Xiaocheng, Wang chi. On the ionospheric and reconnection potentials of the Earth: Results from global MHD simulations[J]. J. Geophys. Res., 2007, 112, A07215, doi: 10.1029/2006JA012145
    [16] Peng Z, Wang C, Hu Y Q, Kan J R, Yang Y F. Simulations of observed auroral brightening caused by solar wind dynamic pressure enhancements under different interplanetary magnetic field conditions[J]. J. Geophys. Res., 2011, 116, A06217, doi: 10.1029/2010JA016318
    [17] Kan J R, Kamide Y. Electrodynamics of the westward traveling surge[J]. J. Geophys. Res., 1985, 90(A8):7615-7619
    [18] Raeder J, Mcpherron R L, Frank L A, et al. Global simulation of the geospace environment modeling substorm challenge event[J]. J. Geophys. Res., 2001, 106:381-395
    [19] Fukushima N. Generalized theorem for no ground magnetic effect of vertical currents connected with Pedersen currents in the uniform-conductivity ionosphere[J]. Rep. Ionos. Space Res. Jpn., 1976, 30:3540
    [20] Moretto T, Ridley A J, Engebretson M J, Rasmussen O. High-latitude ionospheric response to a sudden impulse event during northward IMF conditions[J]. J. Geophys. Res., 2000, 105(A2):2521-2531
    [21] Engebretson M J, Murr D L, Hughes W J, et al. A multipoint determination of the propagation velocity of a sudden commencement across the polar ionosphere[J]. J. Geophys. Res., 1999, 104(A10):22433-22451
  • 加载中
计量
  • 文章访问数:  2019
  • HTML全文浏览量:  24
  • PDF下载量:  1584
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-05
  • 修回日期:  2013-04-01
  • 刊出日期:  2013-09-15

目录

    /

    返回文章
    返回