留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NRLMSISE-00大气模型与GRACE和CHAMP卫星大气密度数据的对比分析

陈旭杏 胡雄 肖存英 王西京

陈旭杏, 胡雄, 肖存英, 王西京. NRLMSISE-00大气模型与GRACE和CHAMP卫星大气密度数据的对比分析[J]. 空间科学学报, 2013, 33(5): 509-517. doi: 10.11728/cjss2013.05.509
引用本文: 陈旭杏, 胡雄, 肖存英, 王西京. NRLMSISE-00大气模型与GRACE和CHAMP卫星大气密度数据的对比分析[J]. 空间科学学报, 2013, 33(5): 509-517. doi: 10.11728/cjss2013.05.509
Chen Xuxing, Hu Xiong, Xiao Cunying, Wang Xijing. Comparison of the Thermospheric Densities Between GRACE/CHAMP Satellites Data and NRLMSISE-00 Model[J]. Chinese Journal of Space Science, 2013, 33(5): 509-517. doi: 10.11728/cjss2013.05.509
Citation: Chen Xuxing, Hu Xiong, Xiao Cunying, Wang Xijing. Comparison of the Thermospheric Densities Between GRACE/CHAMP Satellites Data and NRLMSISE-00 Model[J]. Chinese Journal of Space Science, 2013, 33(5): 509-517. doi: 10.11728/cjss2013.05.509

NRLMSISE-00大气模型与GRACE和CHAMP卫星大气密度数据的对比分析

doi: 10.11728/cjss2013.05.509
基金项目: 国家自然科学基金项目资助(41104099)
详细信息
    作者简介:

    陈旭杏, E-mail: chenxuxing0708@126.com

  • 中图分类号: P353

Comparison of the Thermospheric Densities Between GRACE/CHAMP Satellites Data and NRLMSISE-00 Model

  • 摘要: 利用GRACE(Gravity Recovery And Climate Experiment)和CHAMP(Challenging Mini-Satellite Payload)卫星2002-2008年的大气密度数据与NRLMSISE-00大气模型密度结果进行比较,分析了模型密度误差及其特点.结果显示,NRLMSISE-00大气模型计算的密度值普遍偏大,其相对误差随经纬度变化,在高纬度相对较小;相对误差随地方时变化,在02:00LT和15:00LT左右较大,10:00LT和20:00LT左右较小.通过模型密度相对误差与太阳F10.7指数的对比分析发现,在太阳活动低年模型相对误差最大,而在太阳活动高年相对误差较小;将模型结果分别与GRACEA/B双星和CHAMP卫星的密度数据进行比较,发现对于轨道高度更高的GRACE卫星轨道,模型相对误差更大;在地磁平静期,相对误差与地磁ap指数(当前3h)相关性不强,但是在大磁暴发生时,误差急剧增大.

     

  • [1] Picone J M, Hedin A E, Drob D P, Aikin A C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues[J]. J. Geophys. Res.: Space Phys., 2002. 107(A12), 1468, doi: 10.1029/2002JA009430
    [2] Wang Hongbo. The application of satellite borne accelerometer data to the study of upper atmosphere[J]. Acta Astron. Sinica, 2010, 4:435-436. In Chinese (汪宏波. 星载加速仪数据在高层大气研究中的应用[J]. 天文学报, 2010, 4:435-436)
    [3] Lei J, Matsuo T, Dou X, Sutton E, Luan X. Annual and semiannual variations of thermospheric density: EOF analysis of CHAMP and GRACE data[J]. J. Geophys. Res., 2012, 117, A01310, doi: 10.1029/2011JA017324
    [4] Guo J, Wan W, Forbes J M, Sutton E, Nerem R S, Bruinsma S. Interannual and latitudinal variability of the thermosphere density annual harmonics[J]. J. Geophys. Res., 2008, 113, A08301, doi: 10.1029/2008JA013056.
    [5] Qian L, Solomon S. Thermospheric density: An overview of temporal and spatial variations[J]. Space Sci. Rev., 2012, 168(1):147-173
    [6] Liu H, Lühr H. Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations[J]. J. Geophys. Res., 2005, 110, A09S29, doi: 10.1029/2004JA010908
    [7] Wang Hongbo, Zhao Changyin. Use CHAMP/STAR accelerometer data to evaluate atmospheric density models during solar maximum year[J]. Acta Astron. Sinica, 2008. 49(2):168-178. In Chinese (汪宏波, 赵长印. 用CHAMP加速仪数据 校验太阳活动峰年的大气模型精度[J]. 天文学报, 2008, 49(2):168-178)
    [8] Guo J, Wan W, Forbes J M, et al. Effects of solar variability on thermosphere density from CHAMP accelerometer data[J]. J. Geophys. Res., 2007, 112, A10308, doi: 10.1029/2007JA012409
    [9] Miao Juan, Liu Siqing, Li Zhitao, et al. Atmospheric density calibration using the real-time satellite observation[J]. Chin. J. Space Sci., 2011, 31(4):459-466. In Chinese (苗娟, 刘四清, 李志涛, 等. 基于实时观测数据的 大气密度模式修正[J]. 空间科学学报, 2011, 31(4):459-466)
    [10] Weng Libin, Fang Hanxian, Ji Chunhua, et al. Comparison between the champ/star derived thermospheric density and the NRLMSISE-00 model[J]. Chin. J. Space Sci., 2012, 32(5):713-719. In Chinese (翁利斌, 方涵先, 季春华, 等. 基于卫星加速度数据反演的热层大气密度与NRLMSISE00模式结果的比较研 究[J]. 空间科学学报, 2012, 32(5):713-719)
    [11] Bruinsma S, Tamagnan D, Biancale R. Atmospheric densities derived from CHAMP/STAR accelerometer observations[J]. Planet. Space Sci., 2004, 52(4):297-312
    [12] Reigber C, Lühr H, Schwintzer P. CHAMP mission status[J]. Adv. Space Res., 2002, 30(2):129-134
    [13] Tapley B D, Bettadpur S, Watkins M, Reigber C. The gravity recovery and climate experiment: Mission overview and early results[J]. Geophys. Res. Lett., 2004, 31, L09607, doi: 10.1029/2004GL019920.
    [14] Liu H, Yamamoto M, Lühr H. Wave-4 pattern of the equatorial mass density anomaly: A thermospheric signature of tropical deep convection[J]. Geophys. Res. Lett., 2009, 36, L18104, doi: 10.1029/2009GL039865
    [15] Lei J, Thayer J P, Forbes J M. Longitudinal and geomagnetic activity modulation of the equatorial thermosphere anomaly[J]. J. Geophys. Res., 2010, 115, A08311, doi: 10.1029/2009JA015177
    [16] Miyoshi Y, Jin H, Fujiwara H, Shinagawa H, Liu H. Wave-4 structure of the neutral density in the thermosphere and its relation to atmospheric tides[J]. J. Atmos. Solar-Terr. Phys., 2012, 90:45-51
    [17] Solomon S C, Woods T N, Didkovsky L V, Emmert J T, Qian L. Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum[J]. Geophys. Res. Lett., 2010, 37, L16103, doi: 10.1029/2010GL044468
  • 加载中
计量
  • 文章访问数:  2549
  • HTML全文浏览量:  60
  • PDF下载量:  1946
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-21
  • 修回日期:  2013-07-17
  • 刊出日期:  2013-09-15

目录

    /

    返回文章
    返回