留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辐射条件下微藻基因表达内参基因的选择

蔡文凯 胡金璐 李双双 单革 王高鸿

蔡文凯, 胡金璐, 李双双, 单革, 王高鸿. 辐射条件下微藻基因表达内参基因的选择[J]. 空间科学学报, 2013, 33(6): 651-658. doi: 10.11728/cjss2013.06.651
引用本文: 蔡文凯, 胡金璐, 李双双, 单革, 王高鸿. 辐射条件下微藻基因表达内参基因的选择[J]. 空间科学学报, 2013, 33(6): 651-658. doi: 10.11728/cjss2013.06.651
Cai Wenkai, Hu Jinlu, Li Shuangshuang, Shan Ge, Wang Gaohong. Selection of Suitable Internal Control Genes in Microalgae Under Radiation Condition[J]. Chinese Journal of Space Science, 2013, 33(6): 651-658. doi: 10.11728/cjss2013.06.651
Citation: Cai Wenkai, Hu Jinlu, Li Shuangshuang, Shan Ge, Wang Gaohong. Selection of Suitable Internal Control Genes in Microalgae Under Radiation Condition[J]. Chinese Journal of Space Science, 2013, 33(6): 651-658. doi: 10.11728/cjss2013.06.651

辐射条件下微藻基因表达内参基因的选择

doi: 10.11728/cjss2013.06.651
基金项目: 国家自然科学基金项目(30970688)和载人航天项目共同资助
详细信息
    作者简介:

    单革,E-mail:shange@ustc.edu.cn;王高鸿 E-mail:ghwang@ihb.ac.cn

  • 中图分类号: V527

Selection of Suitable Internal Control Genes in Microalgae Under Radiation Condition

  • 摘要: 作为空间辐射的一种主要成分,紫外辐射可广泛引起陆地植物与水生生物细胞及其组份的破坏.荧光定量PCR技术广泛应用于各类胁迫环境下,研究目的基因的转录水平.在荧光定量PCR中选用合适的内参基因,能够更加准确地校正和标准化目的基因转录水平.本实验研究了辐射条件下水生生物莱茵衣藻6个传统内参基因18SrRNA,GAPDH,β-actin,β-tubulin,EF1-α和UBC基因表达的稳定性.经GeNorm软件研究分析,在辐射条件下,莱茵衣藻18SrRNA基因表达最不稳定,而选用β-actin和GAPDH作为双内参,可以得到更精确的实验结果.

     

  • [1] Li Taosheng, Chen Jun, Wang Zhiqiang. Brief introduction to space radiation environment[J]. Radiat. Prot. Bull., 2008, 4(2):1-10. In Chinese (李桃生, 陈军, 王志强. 空间辐射环境概 述[J]. 辐射防护通讯, 2008, 4(2):1-10)
    [2] Hanelt D, Roleda M Y. UVB radiation may ameliorate photoinhibition in specific shallow-water tropical marine macrophytes[J]. Aquat. Bot., 2009, 91(1):6-12
    [3] Rao M V, Paliyath G, Ormrod D P. Differential response of photosynthetic pigments, rubisco activity and rubisco protein of Arabidopsis thaliana exposed to UVB and ozone[J]. Photochem. Photobiol., 2008, 62(4):727-735
    [4] Schmidt É C, dos Santos R, Horta P A, et al. Effects of UVB radiation on the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales): Changes in cell organization, growth and photosynthetic performance[J]. Micron, 2010, 41(8):919-930
    [5] Hu Ruibo, Fan Chengming, Fu Yongfu. Reference gene selection in plant real-time quantitative reverse transcription (qRT-PCR)[J]. J. Agr. Sci. Tech., 2009, 11(6):30-36. In Chinese (胡瑞波, 范成明, 傅永福. 植物实时荧光定量PCR内参基因的选 择[J]. 中国农业科技导, 2009, 11(6):30-36)
    [6] Goossens K, Poucke Van M, Soom Van A, et al. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos[J]. BMC Develop. Biol., 2005, 5(1):27-29
    [7] Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biol., 2002, 3(7):34-45
    [8] Brattelid T, Winer H L, Levy Olav F, et al. Reference gene alternatives to Gapdh in rodent and human heart failure gene expression studies[J]. BMC Mol. Biol., 2010, 11(1):22-24
    [9] Brugé F, Venditti E, Tiano L, et al. Reference gene validation for qPCR on normoxia-and hypoxia-cultured human dermal fibroblasts exposed to UVA: Is β-actin a reliable normalizer for photoaging studies[J]. J. Biotech., 2011, 156(3):153-162
    [10] Hema R, Senthil-Kumar M, Shivakumar S, et al. Chlamydomonas reinhardtii, a model system for functional validation of abiotic stress responsive genes[J]. Planta, 2007, 226(3):655-670
    [11] D'haene B, Vandesompele J, Hellemans J. Accurate and objective copy number profiling using real-time quantitative PCR[J]. Methods, 2010, 50(4):262-270
    [12] Infante C, Matsuoka P M, Asensio E, et al. Selection of housekeeping genes for gene expression studies in larvae from flatfish using real-time PCR[J]. BMC Mol. Biol., 2008, 9(1):28
    [13] Etschmann B, Wilcken B, Stoevesand K, et al. Selection of reference genes for quantitative real-time PCR analysis in canine mammary tumors using the GeNorm algorithm[J]. Vet Pathol., 2006, 43(6):934-942
    [14] Schmid H, Cohen C D, Henger A, et al. Validation of endogenous controls for gene expression analysis in micro-dissected human renal biopsies[J]. Kidney Intern., 2003, 64(1):356-360
    [15] Hou Weihai, Sun Peng, Chen Quanjia, et al. Selection of the reference genes for gene expression studies in rehmannia glutinosa by real-time quantitative PCR[J]. Chin. Agr. Sci. Bull., 2011, 27(17):76-82. In Chinese (侯维海, 孙鹏, 陈全家, 等. 地黄实时定量PCR内参基因的筛选[J]. 中国农学通报, 2011, 27(17):76-82)
    [16] Kadegowda A K, Bionaz M, Thering B, et al. Identification of internal control genes for quantitative polymerase chain reaction in mammary tissue of lactating cows receiving lipid supplements[J]. J. Dairy Sci., 2009, 92(5):2007-2019
    [17] Bionaz M, Loor J J. Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle[J]. Physiol. Genom., 2007, 29(3):312-319
    [18] Tang R, Dodd A, Lai D, et al. Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization[J]. Acta Biochim. Biophys. Sin., 2007, 39(5):384-390
    [19] Kim B R, Nam H Y, Kim S U, et al. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice[J]. Biotech. Lett., 2003, 25(21):1869-1872
    [20] Tricarico C, Pinzani P, Bianchi S, et al. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies[J]. Anal. Biochem., 2002, 309(2):293-300
    [21] Nicot N, Hausman J F, Hoffmann L, et al. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress[J]. J. Exp. Bot., 2005, 56(421):2907-2914
  • 加载中
计量
  • 文章访问数:  1254
  • HTML全文浏览量:  72
  • PDF下载量:  1639
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-17
  • 修回日期:  2013-08-21
  • 刊出日期:  2013-11-15

目录

    /

    返回文章
    返回