留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

联合太阳和行星际物理参数预测行星际激波能否到达地球

解妍琼 张莹 杜丹

解妍琼, 张莹, 杜丹. 联合太阳和行星际物理参数预测行星际激波能否到达地球[J]. 空间科学学报, 2014, 34(1): 11-23. doi: 10.11728/cjss2014.01.011
引用本文: 解妍琼, 张莹, 杜丹. 联合太阳和行星际物理参数预测行星际激波能否到达地球[J]. 空间科学学报, 2014, 34(1): 11-23. doi: 10.11728/cjss2014.01.011
Xie Yanqiong, Zhang Ying, Du Dan. Predicting whether an interplanetary shock will encounter the Earth by using solar and interplanetary parameters[J]. Chinese Journal of Space Science, 2014, 34(1): 11-23. doi: 10.11728/cjss2014.01.011
Citation: Xie Yanqiong, Zhang Ying, Du Dan. Predicting whether an interplanetary shock will encounter the Earth by using solar and interplanetary parameters[J]. Chinese Journal of Space Science, 2014, 34(1): 11-23. doi: 10.11728/cjss2014.01.011

联合太阳和行星际物理参数预测行星际激波能否到达地球

doi: 10.11728/cjss2014.01.011
基金项目: 国家自然科学基金项目(41304146,41231068,41104093);国家重点实验室专项基金项目;公益性行业(气象)科研专项经费项目(GYHY200806024)共同资助
详细信息
    通讯作者:

    解妍琼,E-mail:yqxie@spaceweather.ac.cn

  • 中图分类号: P352

Predicting whether an interplanetary shock will encounter the Earth by using solar and interplanetary parameters

  • 摘要: 选取第23太阳活动周(1997—2006年)期间542例由太阳爆发活动驱动的行星际激波事件,分析确定了太阳源头和行星际空间中影响行星际激波能否到达地球轨道的关键物理参数;在此基础上,建立了预测行星际激波能否到达地球的新预报模型(EdEaSPM). 回溯预报结果表明,EdEaSPM模型的预报成功率约为66%,略高于国际一流预报模型的预报成功率;EdEaSPM模型的虚报率未超过50%,改善了当前国际主流模型虚报率较大的情况;对于偏度指标,虽然当前所有模型的偏度值均大于1,但EdEaSPM模型的偏度值最接近于1且明显小于其他模型的偏度值;EdEaSPM模型的其他评价指标也都高于国际主流模型的相应指标. 此外,选取2012年期间的激波事件对EdEaSPM模型进行了预报检验,预测结果与实际情况吻合. EdEaSPM模型不仅能够提前约1~3天进行预报,而且预报效果与国际一流模型具有可比性,尤其是在提高预报成功率及降低虚报率方面具有一定优势.

     

  • [1] Feng Xueshang, Xiang Changqing, Zhong Dingkun. The state-of-art of three-dimensional numerical study for corona-interplanetary process of solar storms[J]. Sci. China: D, 2011, 41(1):1-28. In Chinese (冯学尚, 向长青, 钟鼎坤. 太阳风暴的日冕行星际过程三维数值研究进展[J]. 中国科学: D, 2011, 41(1):1-28)
    [2] Fry C D, Dryer M, Smith Z, et al. Forecasting solar wind structures and shock arrival times using an ensemble of models[J]. J. Geophys. Res., 2003, 108(A2):1070, doi: 10.1029/2002JA009474
    [3] McKenna-Lawlor S M P, Dryer M, Kartalev M D, et al. Near realtime predictions of the arrival at Earth of flare-related shocks during Solar Cycle 23[J]. J. Geophys. Res., 2006, 111, A11103, doi: 10.1029/2005JA011162
    [4] Smith Z K, Dryer M, McKenna-Lawlor S M P, et al. Operational validation of HAFv2's predictions of interplanetary shock arrivals at Earth: Declining phase of Solar Cycle 23[J]. J. Geophys. Res., 2009, 114, A05106, doi: 10.1029/2008JA013836
    [5] Zhao X H, Feng X S, Wu C C. Characteristics of solar flares associated with interplanetary shock or nonshock events at Earth[J]. J. Geophys. Res., 2006, 111, A09103, doi: 10.1029/2006JA011784
    [6] Zhao X H, Feng X S, Wu C C. Influence of solar flare's location and heliospheric current sheet on the associated shock's arrival at Earth[J]. J. Geophys. Res., 2007, 112, A06107, doi: 10.1029/2006JA012205
    [7] Yermolaev Y I, Yermolaev M Y, Zastenker G N, et al. Statistical studies of geomagnetic storm dependencies on solar and interplanetary events: a review[J]. Planet. Space Sci., 2005, 53:189-196
    [8] Cane H V, Richardson I G, Cyr O C St. Coronal mass ejections, interplanetary ejecta and geomagnetic storms[J]. Geophys. Res. Lett., 2000, 27(21):3591-3594
    [9] Wang Y M, Ye P Z, Wang S, et al. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000[J]. J. Geophys. Res., 2002, 107(A11): 1340, doi: 10.1029/2002JA009244
    [10] Srivastava N, Venkatakrishnan P. Solar and interplanetary sources of major geomagnetic storms during 1996—2002[J]. J. Geophys. Res., 2004, 109, A10103, doi: 10.1029/2003JA010175
    [11] Gopalswamy N, Yashiro S, Akiyama S. Geoeffectiveness of halo coronal mass ejections[J]. J. Geophys. Res., 2007, 112, A06112, doi: 10.1029/2006JA012149
    [12] Moon Y J, Cho K S, Dryer M, et al. New geoeffective parameters of very fast halo coronal mass ejections[J]. Astrophys. J., 2005, 624:414-419
    [13] Kang S M, Moon Y J, Cho K S, et al. Coronal mass ejection geoeffectiveness depending on field orientation and interplanetary coronal mass ejection classification[J]. J. Geophys. Res., 2006, 111, A05102, doi: 10.1029/2005JA011445
    [14] Shen C L, Wang Y M, Gui B, et al. Kinematic Evolution of A Slow CME in Corona Viewed by STEREO-B on October 8, 2007[J]. Solar Phys., 2011, 269:389-400
    [15] Song H, Yurchyshyn V, Yang G, et al. The automatic predictability of super geomagnetic storms from Halo CMEs associated with large solar flares[J]. Solar Phys., 2006, 238:141-165
    [16] Hu Y Q, Jia X Z. Interplanetary shock interaction with the heliospheric current sheet and its associated structures[J]. J. Geophys. Res., 2001, 106:29299-29304
    [17] Wei F S, Dryer M. Propagation of solar flare-associated interplanetary shock waves in the heliospheric meridional plane[J]. Solar Phys., 1991, 132:373-394
    [18] Xie Y Q, Wei F S, Xiang C Q, et al. The effect of heliospheric current sheet on interplanetary shocks[J]. Solar Phys., 2006, 238(2):377-390
    [19] Gopalswamy N, Makela P, Xie H, et al. CME interactions with coronal holes and their interplanetary consequences[J]. J. Geophys. Res., 2009, 114, A00A22, doi: 10.1029/2008JA013686
    [20] Gopalswamy N, Xie H, Makela P, et al. Interplanetary shocks lacking type Ⅱ radio bursts[J]. Astrophys. J., 2010, 710:1111-1126
    [21] Xie H, Gopalswamy N, Cyr O C St. Near-Sun flux rope structure of CMEs[J]. Solar Phys., 2013, 284(1):47-58
    [22] Mohamed A A, Gopalswamy N, Yashiro S, et al. The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of Solar Cycle 23[J]. J. Geophys. Res., 2012, 117, 1103, doi: 10.1029/2011JA016589
    [23] Smart D F, Shea M A. A simplified model for timing the arrival of solar flare-initiated shocks[J]. J. Geophys. Res., 1985, 90(A1):183-190
    [24] Smith Z K, Dryer M. The interplanetary shock propagation model: A model for predicting solar-flare-caused geomagnetic sudden impulses based on the 2-1/2D MHD numerical simulation results from the interplanetary global model[R]. NOAA-TM-ERL-SEL-89, 1995
    [25] Fry C D, Sun W, Deehr C S, et al. Improvements to the HAF solar wind model for space weather predictions[J]. J. Geophys. Res., 2001, 106:20985-21002
    [26] Feng X S, Zhang Y, Yang L P, et al. An operational method for shock arrival time prediction by one-dimensional CESE-HD solar wind model[J]. J. Geophys. Res., 2009, 114, A10103, doi: 10.1029/2009JA014385
    [27] Feng X S, Zhang Y, Sun W, et al. A practical database method for predicting arrivals of average interplanetary shocks at Earth[J]. J. Geophys. Res., 2009, 114, A01101, doi: 10.1029/2008JA013499
    [28] Qin G, Zhang M, Rassoul H K. Prediction of the shock arrival time with SEP observations[J]. J. Geophys. Res., 2009, 114, A09104, doi: 10.1029/2009JA014332
    [29] Zhang J, Dere K P, Howard R A, et al. Identification of solar sources of major geomagnetic storms between 1996 and 2000[J]. Astrophys. J., 2003, 582:520-533
  • 加载中
计量
  • 文章访问数:  1234
  • HTML全文浏览量:  58
  • PDF下载量:  2367
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-11
  • 修回日期:  2013-06-28
  • 刊出日期:  2014-01-15

目录

    /

    返回文章
    返回