留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2008—2009年电离层对重现型地磁活动的响应

刘晓菊 陈艳红 龚建村

刘晓菊, 陈艳红, 龚建村. 2008—2009年电离层对重现型地磁活动的响应[J]. 空间科学学报, 2014, 34(1): 29-37. doi: 10.11728/cjss2014.01.029
引用本文: 刘晓菊, 陈艳红, 龚建村. 2008—2009年电离层对重现型地磁活动的响应[J]. 空间科学学报, 2014, 34(1): 29-37. doi: 10.11728/cjss2014.01.029
Liu Xiaoju, Chen Yanhong, Gong Jiancun. Ionosphere response to recurrent geomagnetic activity during 2008 and 2009[J]. Chinese Journal of Space Science, 2014, 34(1): 29-37. doi: 10.11728/cjss2014.01.029
Citation: Liu Xiaoju, Chen Yanhong, Gong Jiancun. Ionosphere response to recurrent geomagnetic activity during 2008 and 2009[J]. Chinese Journal of Space Science, 2014, 34(1): 29-37. doi: 10.11728/cjss2014.01.029

2008—2009年电离层对重现型地磁活动的响应

doi: 10.11728/cjss2014.01.029
基金项目: 国家重点基础研究计划项目资助(2012CB825606,2011CB811406)
详细信息
    通讯作者:

    刘晓菊,E-mail:wclxjzh@126.com

  • 中图分类号: P352

Ionosphere response to recurrent geomagnetic activity during 2008 and 2009

  • 摘要: 利用2008—2009年的GPS TEC数据,分析了电离层对冕洞引起的重现型地磁活动的响应. 结果表明,在太阳活动低年,电离层TEC表现出与地磁 ap指数(采用全球3h等效幅度指数ap来表征)和太阳风速度相似的9天和13.5天短周期变化,表明TEC的这种短周期特性主要与重现型地磁活动相关. 地磁纬度和地方时分析表明,夜间高纬地区正负相扰动明显,中低纬地区则以正相扰动为主,较大的TEC变幅主要发生在南北半球高纬地区,夜间南半球高纬地区TEC变化相对ap指数变化有相位延迟. 白天中低纬地区正负相扰动明显,TEC短周期变化与ap指数变化相位基本一致. 2008年TEC的9天和13.5天周期变化幅度大于2009年.

     

  • [1] Buonsanto M J. Ionospheric storms ——-A review[J]. Space Sci. Rev., 1999, 88:563-601
    [2] Mendillo M. Storms in the ionosphere: Patterns and processes for total electron content[J]. Rev. Geophys., 2006, 44, doi: 10.1029/2005RG000193
    [3] Mendillo M, Papagiannis M D, Klobuchar J A. Ionospheric storms at mid-latitudes[J]. Radio Sci., 1970, 5(6):895-898
    [4] Rishbeth H, Mendillo M. Patterns of ionospheric variability[J]. J. Atmos. Sol. Terr. Phys., 2001, 63:1661-1680
    [5] Crooker N U, Cliver E W. Postmodern view of M-regions[J]. J. Geophys. Res., 1994, 99:23383-23390
    [6] Tsurutani B T, Gonzalez W D, Gonzalez A L C, et al. Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle[J]. J. Geophys. Res., 1995, 100:21717-21733
    [7] Altadill D, apostolov E M. Time and scale size of planetary wave signatures in the ionospheric F region: Role of the geomagnetic activity and mesosphere/lower thermosphere winds[J]. J. Geophys. Res., 2003, 108:1403
    [8] Lastovieka J, Krian P, Sauli P, Novotna D. Persistence of the planetary wave type oscillations in f0F2 over Europe[J]. Ann. Geophys., 2003, 21:1543-1552
    [9] Lei J, Thayer J P, Forbes J M, Sutton E K, Nerem R S. Rotating solar coronal holes and periodic modulation of the upper atmosphere[J]. Geophys. Res. Lett., 2008, 35, L10109, doi: 10.1029/2008GL033875
    [10] Lei J, Thayer J P, Forbes J M, et al. Global thermospheric density variations caused by high-speed solar wind streams during the declining phase of solar cycle 23[J]. J. Geophys. Res., 2008, doi: 10.1029/2008JA013433
    [11] Thayer J P, Lei J, Forbes J M, et al. Thermospheric density oscillations due to periodic solar wind high-speed streams[J]. J. Geophys. Res., 2008, 113, A06307, doi: 10.1029/2008JA013190
    [12] Lei J, Thayer J P, Forbes J M, et al. Ionosphere response to solar wind high-speed streams[J]. Geophys. Res. Lett., 2008, 35, L19105, doi: 10.1029/2008GL035208.
    [13] Pedatella N M, Lei J, Thayer J P, Forbes J M. Ionosphere response to recurrent geomagnetic activity: Local time dependency[J]. J. Geophys. Res., 2010, 115:A02301
    [14] Tulasi R S, Lei J, Su S Y, et al. Dayside ionospheric response to recurrent geomagnetic activity during the extreme solar minimum of 2008[J]. Geophys. Res. Lett., 2010, 2:37
    [15] Liu J, Liu L, Zhao B, Wan W, Heelis R A. Response of the topside ionosphere to recurrent geomagnetic activity[J]. J. Geophys. Res., 2010, 115, A12327, doi: 10.1029/2010JA015810
    [16] Liu J, Liu L, Zhao B, et al. High-speed stream impacts on the equatorial ionization anomaly region during the deep solar minimum year 2008[J]. J. Geophys. Res., 2012, 117, A10304, doi: 10.1029/2012JA018015
    [17] Kamide Y. Current understanding of magnetic storms: Storm-substorm relationships[J]. J. Geophys. Res., 1998, 103:17705
    [18] Giuliana T. Evolution of coronal holes and implications for high-speed solar wind during the minimum between Cycles 23 and 24[J]. Solar Phys., 2010, doi: 10.1007/s11207-010-9677-2
    [19] William W, Wei S. Time Series Analysis: Univariate and Multivariate Methods[M]. USA: Addison Wesley, 2006:289-290
    [20] Chen Yanhong, Wan Weixing, Liu Libo, et al. A TEC model based on the observation at WUHAN ionospheric observatory[J]. Chin. J. Space Sci., 2002, 22(1):27-35. In Chinese (陈艳红, 万卫星, 刘立波, 等. 武汉地区电离层电子浓度总含 量的统计经验模式研究[J]. 空间科学学报, 2002, 22(1):27-35)
    [21] Denton M H, Ulich T, Turunen E. Modification of midlatitude ionospheric parameters in the F2 layer by persistent high-speed solar wind streams[J]. Space Weather, 2009, 7, S04006, doi: 10.1029/2008SW000443
    [22] Pedatella N M, Forbes J M. Electrodynamic response of the ionosphere to high-speed solar wind streams[J]. J. Geophys. Res., 2011, 116, A12310, doi: 10.1029/2011JA-017050
    [23] Fejer B G, Scherliess L. Empirical models of storm time equatorial electric fields[J]. J. Geophys. Res., 1997, 102: 24047-24056, doi: 10.1029/97JA02164
  • 加载中
计量
  • 文章访问数:  1461
  • HTML全文浏览量:  99
  • PDF下载量:  2598
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-01
  • 修回日期:  2013-10-20
  • 刊出日期:  2014-01-15

目录

    /

    返回文章
    返回