留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准平行无碰撞激波上游能量粒子的观测研究

张伟娜 吴明雨 陆全明 单立灿 郝宇飞 高新亮 王水

张伟娜, 吴明雨, 陆全明, 单立灿, 郝宇飞, 高新亮, 王水. 准平行无碰撞激波上游能量粒子的观测研究[J]. 空间科学学报, 2014, 34(2): 137-142. doi: 10.11728/cjss2014.02.137
引用本文: 张伟娜, 吴明雨, 陆全明, 单立灿, 郝宇飞, 高新亮, 王水. 准平行无碰撞激波上游能量粒子的观测研究[J]. 空间科学学报, 2014, 34(2): 137-142. doi: 10.11728/cjss2014.02.137
Zhang Weina, Wu Mingyu, Lu Quanming, Shan Lican, Hao Yufei, Gao Xinliang, Wang Shui. Observations of energetic particles in the upstream of a quasi-parallel collisionless shock[J]. Chinese Journal of Space Science, 2014, 34(2): 137-142. doi: 10.11728/cjss2014.02.137
Citation: Zhang Weina, Wu Mingyu, Lu Quanming, Shan Lican, Hao Yufei, Gao Xinliang, Wang Shui. Observations of energetic particles in the upstream of a quasi-parallel collisionless shock[J]. Chinese Journal of Space Science, 2014, 34(2): 137-142. doi: 10.11728/cjss2014.02.137

准平行无碰撞激波上游能量粒子的观测研究

doi: 10.11728/cjss2014.02.137
基金项目: 国家自然科学基金项目(41174124,41274144,40931053)和国家重点基础研究发展计划项目(2012CB825602)共同资助
详细信息
    通讯作者:

    吴明雨,E-mail:wumy@mail.ustc.edu.cn

  • 中图分类号: P353

Observations of energetic particles in the upstream of a quasi-parallel collisionless shock

  • 摘要: 通过Cluster卫星在2005年3月16日观测到的一个准平行激波观测事例,研究了准平行激波上游低频等离子体波动与能量离子之间的关系.卫星观测结果表明,在准平行激波上游,离子微分能通量受到了非线性波动的调制.在磁场强度较小区域,离子微分能通量较高.产生这种现象的可能原因是准平行激波上游的非线性波动可以捕获离子,被捕获的离子在波动中来回弹跳并被电场加速,从而导致磁场强度较小区域离子微分能通量较高.这一观测结果与已有的混合模拟结果相吻合.

     

  • [1] Golgate S A. Collisionless plasma shock[J]. Phys. Fluids, 1959, 2(5):485-493
    [2] Hamza A M, Meziane K. On turbulence in the quasi-perpendicular bow shock[J]. Planet. Space Sci., 2011, 59(7):475-481
    [3] Tsurutani B T, Smith E J, Jones D E. Waves observed upstream of interplanetary shocks[J]. J. Geophys. Res., 1983, 88(A7):5645-5656
    [4] Gosiling J T, Thomsen M F, Bame S J, et al. Evidence for specularly reflected ions upstream from the quasi-parallel bow shock[J]. Geophys. Res. Lett., 1982b, 9(12):1333-1336
    [5] Gosiling J T, Thomsen M F, Bame S J, et al. Ion reflection and downstream thermalization at the quasi-parallel bow shock[J]. Geophys. Res., 1989, 94(A8):10027-10037
    [6] Onsager T G, Thomsen M F, Gosiling G T, et al. Survey of coherent ion reflection at the quasi-parallel bow shock[J]. J. Geophys. Res., 1990, 95(A3):2261-2271
    [7] Gosiling J T, Thomsen M F, Bame S J, et al. Observations of two distinct populations of bow shock ions in the upstream solar wind[J]. Geophys. Res. Lett., 1978, 5(11):957-960
    [8] Gosiling J T, Asbridge J R, Bame S J, et al. Observations of two distinct populations of bow shock ions in the upstream solar wind[J]. Geophys. Res. Lett., 1987, 5(11):4-8
    [9] Hoppe M M, Russell C T, Frank L A, et al. Upstream hydromagnetic-waves and their association with backstreaming ion populations——Isee-1 and 2 observations[J]. J. Geophys. Res., 1981, 86(6):4471-4492
    [10] Blandford R, Eichler D. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin[J]. Phys. Reports, 1987, 154(1):1-75
    [11] Gary S P. Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review[J]. Space Sci. Rev., 1991, 56(3-4):373-415
    [12] Lu Q M, Xia L D, Wang S. Hybrid simulations of parallel and oblique electromagnetic alpha/proton instabilities in the solar wind[J]. J. Geophys. Res., 2006, 111(A09):A09101
    [13] Zank G P, Rice W K M, Wu C C. Particle acceleration and coronal mass ejection driven shocks: A theoretical model[J]. J. Geophys. Res., 2000, 105(A11):25079-25095
    [14] Giacalone J. Large-scale hybrid simulations of particle acceleration at a parallel shock[J]. Astrophys. J., 2004, 609(1):452-458
    [15] Zank G P, Li G, Verkhoglyadova O. Particle acceleration at interplanetary shocks[J]. Space Sci. Rev., 2007, 130(1/2/3/4):255-272
    [16] Lever E L, Quest K B, Shapiro V D. Shock surfing vs. shock drift acceleration[J]. Geophy. Res. Lett., 2001, 28(7):1367-1370
    [17] Shapiro V D, Er D. Shock surfing acceleration[J]. Planet. Space Sci., 2003, 51(11):665-680
    [18] Zank G P, Pauls H L, Cairns I H, et al. Interstellar pickup ions and quasi-perpendicular shocks: Implications for the termination shock and interplanetary shocks[J]. J. Geophys. Res., 1996, 101(A1):457-477
    [19] Escoubet C P, Fehringer M, Goldstein M. The Cluster mission[J]. Ann. Geophys., 2001, 19:1197-1200
    [20] Lefebvre B, Seki Y, Schwartz S J, et al. Reformation of an oblique shock observed by Cluster[J]. J. Geophy. Res., 2009, 114(A11):A11107
    [21] Balogh A, Carr C M, Acuña M H, et al. The Cluster magnetic field investigation: Overview of in-flight performance and initial results[J]. Ann. Geophys., 2001, 19:1207-1217
    [22] Reme H, Aoustin C, Bosqued J M, et al. First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster Ion Spectrometry (CIS) experiment[J]. Ann. Geophys., 2001, 19:1303-1354
    [23] Su Y Q, Lu Q M, Huang C, et al. Particle acceleration and generation of diffuse superthermal ions at a quasi-parallel collisionless shock: Hybrid simulations[J]. J. Geophys. Res., 2012, 117(A08):A08107
  • 加载中
计量
  • 文章访问数:  1283
  • HTML全文浏览量:  57
  • PDF下载量:  1774
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-01
  • 修回日期:  2013-08-13
  • 刊出日期:  2014-03-15

目录

    /

    返回文章
    返回