Study of Surface Charging and Discharging Effects on Solar Array Drive Assembly
-
摘要: 空间等离子体环境效应导致的卫星表面充放电是造成卫星在轨工作异常及故障的重要原因之一. 太阳帆板驱动机构(Solar Array Drive Assembly,SADA)是长寿命、大功率卫星电传输环节的关键部件,易成为充放电效应的对象,可使卫星丧失能源,导致整星失效. 为验证空间等离子体环境导致的表面充放电对SADA特别是其功率传输可靠性和安全性的影响,利用等离子体环境模拟试验装置,模拟地球同步轨道(Geostationary Orbit,GEO)等离子体环境,针对SADA进行试验研究. 结果表明,使用两种不同绝缘材料的SADA在空间等离子体模拟环境下表现没有明显区别,表面充放电未对设计合理的SADA正常工作造成明显影响. 研究结果对未来GEO轨道SADA等空间机构的可靠性和安全性设计具有一定指导意义.Abstract: The spacecraft surface charging and discharging resulting from the space plasma environment is one of the main causes of spacecraft abnormity and malfunction. Solar Array Drive Assembly (SADA) is a crucial component of the electrical transfer sub-assembly of the modern long life and large power satellite, which is used to rotate the solar array to follow sunlight for maximum energy acquisition, as well as transfer power and signals from the solar array to satellite. SADA is installed at the interface of spacecraft body and outer space, so it is directly exposed to the space plasma environment and prone to the adverse effects of charging and discharging. When SADA malfunctions, the satellite will lose energy and results a failure of the whole satellite. In order to test the influence of surface charging and discharging by the space plasma environment on SADA, especially its power transfer reliability and safety, a plasma environment simulation device simulating the plasma environment in the GEO orbit, was utilized to conduct experimental test on a SADA. The SADAs utilizing different dielectrics demonstrated similar effects in the space plasma environment. The test result also demonstrated that the surface charging and discharging would not influence the normal functionality of SADA with proper design. The test result will serve as a good foundation for the design of future space mechanisms like SADA for higher reliability and safety.
-
[1] Purvis C K, Garrett H B, Whittlesey A C, Stevens N J. Design Guidelines for Assessing and Controlling Spacecraft Charging Effects[R], NASA TP-2361. Springfield, Virginia: NASA, 1984 [2] ECSS Secretariat. Space Engineering: Spacecraft Charging[S], ECSS-E-ST-20-06C. Noordwijk, the Netherlands: ESA, 2008 [3] Gao Xing, Wang Youping. The universalization-, seria-liza-tion- and modularization design of Solar Array Drive Assembly (SADA). Chin. J. Space Sci., 2002, 22(z2):55-67. In Chinese (高星, 王友平. 太阳电池阵驱动机构的通用化、系列化和组合化设计[J]. 空间科学学报. 2002, 22(z2):55-67) [4] Lundin B T. Report of the Seasat Failure Review Board[R] nasa_techdoc_20040171604. Glenn Research Center: NASA, 1978 [5] Yang Fang, Shi Liqin, Liu Siqing, Gong Jiancun. Surface charging simulation of LEO spacecraft[J]. Chin. J. Space Sci., 2011, 31(4):509-513. In Chinese (杨昉, 师立勤, 刘四清, 龚建村. 低轨道航天器的表面充电模拟[J]. 空间科学学报, 2011, 31(4):509-513) [6] LAI S T. Spacecraft charging-present situation and some problems[C]//38th AIAA Plasma dynamics and Lasers Conference. Miami, Florida: AIAA, 2007 [7] Gussenhoven M S. Geosynchronous environment for severe spacecraft charging[J]. J. Spacecr. Rockets, 1982, 20(1):26-34 [8] Bai J, Wu J, Wang J, Zheng X. The influence of voltage-sensitive additive on electrical parameters of polyimide[C]//Proceedings of the 9th International Conference on Properties and Applications of Dielectric Materials. Harbin: IEEE, 2009 -

计量
- 文章访问数: 1171
- HTML全文浏览量: 42
- PDF下载量: 1274
- 被引次数: 0