留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用卫星两行轨道根数反演热层密度

任廷领 苗娟 刘四清 李志涛

任廷领, 苗娟, 刘四清, 李志涛. 利用卫星两行轨道根数反演热层密度[J]. 空间科学学报, 2014, 34(4): 426-433. doi: 10.11728/cjss2014.04.426
引用本文: 任廷领, 苗娟, 刘四清, 李志涛. 利用卫星两行轨道根数反演热层密度[J]. 空间科学学报, 2014, 34(4): 426-433. doi: 10.11728/cjss2014.04.426
Ren Tingling, Miao Juan, Liu Siqing, Li Zhitao. Research on Thermospheric Densities Derived from Two-line Element Sets[J]. Journal of Space Science, 2014, 34(4): 426-433. doi: 10.11728/cjss2014.04.426
Citation: Ren Tingling, Miao Juan, Liu Siqing, Li Zhitao. Research on Thermospheric Densities Derived from Two-line Element Sets[J]. Journal of Space Science, 2014, 34(4): 426-433. doi: 10.11728/cjss2014.04.426

利用卫星两行轨道根数反演热层密度

doi: 10.11728/cjss2014.04.426
基金项目: 国家重点基础研究发展计划项目(2012CB825606)和航天飞行动力学技术重点实验室开放基金项目(2012afdl026)共同资助
详细信息
    通讯作者:

    任廷领,E-mail:rtl.qd.ouc@163.com

  • 中图分类号: P351

Research on Thermospheric Densities Derived from Two-line Element Sets

  • 摘要: 两行轨道根数(TLEs)是基于一般摄动理论产生的用于预报地球轨道飞行器位置和速度的一组轨道参数,通过求解大气阻力微分方程,可反演出热层大气密度. 本文选取近圆轨道CHAMP卫星和椭圆轨道Explorer8卫星,以两行轨道根数数据为基础,计算反弹道系数,并根据不同轨道特征采用两种不同反演方法对热层大气密度进行研究. 结果表明,这两种方法反演得到的大气密度与实测值均符合较好,其中CHAMP卫星的反演结果和经验模式值相对于实测值的误差分别为7.94%和13.94%,Explorer8卫星的误差分别为9.04%和14.32%. 相比模式值,利用两行轨道根数数据反演的热层大气密度更接近于实测值,说明该方法可以作为获取大量可靠大气密度数据的一种有效途径.

     

  • [1] Berger C, Biancale R Ill M, Barlier F. Improvement of the empirical thermosphere model DTM: DTM-94-A comparative review of various temporal variations and prospects in space geodesy applications[J]. J. Geod., 1998, 72(3):161-178
    [2] Bruinsma S, Thuillier G, Barlier F. The DTM-2000 empirical thermosphere model with new data assimilation and constrains at lower boundary: accuracy and properties[J]. J. Atmos. Solar-Terr. Phys., 2003, 65:1053-1070
    [3] Hedin A. MSIS-86 thermospheric model[J]. J. Geophys. Res., 1987, 92(A5):4649-4662
    [4] Hedin A E. Extension of the MSIS thermospheric model into the middle and lower atmosphere[J]. J. Geophys. Res., 1991, 96(A2):1159-1172
    [5] Picone J M, Hedin A E, Drob D P. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues[J]. J. Geophys. Res., 2002, 107, A12, 1468, doi: 10.1029/2002JA009430
    [6] Rhoden E, Forbes J, Marcos F. The influence of geomagnetic and solar variabilities on lower thermosphere density[J]. J. Atmos. Solar-Terr. Phys., 2000, 62:999-1013
    [7] Storz M F, Bowman B R. High accuracy satellite drag model[J]. Adv. Space Res., 2005, 36:2497-2505
    [8] Miao Juan, Liu Siqing, Li Zhitao, et al. Atmospheric density calibration using the real-time satellite observation[J]. Chin. J. Space Sci., 2011, 31(4):459-466. In Chinese (苗娟, 刘四清, 李志涛, 等. 基于实时观测数据的大气密度模式修正[J]. 空间科学学报, 2011, 31(4):459-466)
    [9] Picone J M, Emmert J T, Lean J L. Thermospheric densities derived from spacecraft orbits: Accurate processing of two-line element sets[J]. J. Geophys. Res., 2005, 110, A03301, doi: 10.1029/2004JA010585
    [10] Lean J L, Picone J M, Emmert J T, et al. Thermospheric densities derived from spacecraft orbits: Application to the Starshine satellites[J]. J. Geophys. Res., 2006, 111, A04301, doi: 10.1029/2005JA011399
    [11] Emmert J T, Picone J M, Lean J L. Global change in the thermosphere: Compelling evidence of a secular decrease in density[J]. J. Geophys. Res., 2004, 109, A02301, doi: 10.1029/2003JA010176
    [12] Emmert J T. A long-term data set of globally averaged thermospheric total mass density[J]. J. Geophys. Res., 2009, 114, A06315, doi: 10.1029/2009JA014102
    [13] Emmert J T, Picone J M, Meier R R. Thermospheric global average density trends, 1967-2007, derived from orbits of 5000 near-Earth objects[J]. Geophys. Res. Lett., 2008, 35:L05101, doi: 10.1029/2007GL032809
    [14] Yang Weilian. Accuracy evaluation of two line element[J]. Spacec. Eng., 2009, 18(3):8-13. In Chinese (杨维廉. 两行根数的精度评估[J]. 航天器工程, 2009, 18(3):8-13)
    [15] Diao Ninghui, Liu Jianqiang, Sun Congrong, et al. Satellite orbit calculation based on SGP4 model[J]. Remote Sens. Inf., 2012, 27(4):64-70. In Chinese (刁宁辉, 刘建强, 孙从容, 等. 基于SGP4模型的卫星轨道 计算[J]. 遥感信息. 2012, 27(4):64-70)
    [16] Liu Wei, Miao Yuanxing. Tests of the accuracies of SGP4/SDP4 model predictions[J]. Astron. Res. Tech., 2011, 8(2):128-131. In Chinese (刘卫, 缪元兴. SGP4/SDP4模 型预报可靠性分析[J]. 天文研究与技术, 2011, 8(2):128-131)
    [17] Hu Min, Zeng Guoqiang. Transformation between mean and osculating orbital elements[J]. J. Spacecr. TT&C Tech., 2012, 31(2):77-81. In Chinese (胡敏, 曾国强. 平均轨道根数与密切轨道根数的互换[J]. 飞行器测控学报, 2012, 31(2):77-81)
    [18] Hedin A E, Fleming E L, Manson A H, et al. Empirical wind model for the upper, middle, and lower atmosphere[J]. J. Atmos. Terr. Phys., 1996, 58(13):1421-1447
    [19] King-Hele D G. Satellite Orbits in an Atmosphere: Theory and Applications[M]. Glasgow: Blackie and Son Ltd, 1987
    [20] Bowman B R. True satellite ballistic coefficient determination for HASDM[C]// AIAA/AAS Astrodynamics Specialist Conference. California: Monterey, 2002
    [21] Emmert J T, Meier R R, Picone J M, et al. Thermospheric density 2002-2004: TIMED/GUVI dayside limb observations and satellite drag[J]. J. Geophys. Res., 2006, 111, A10S16, doi: 10.1029/2005JA011495
    [22] Picone J M, Hedin A E, Drob D P. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues[J]. J. Geophys. Res., 2002, 107, A12, 1468, doi: 10.1029/2002JA009430
  • 加载中
计量
  • 文章访问数:  1508
  • HTML全文浏览量:  4
  • PDF下载量:  1090
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-05
  • 修回日期:  2014-02-17
  • 刊出日期:  2014-07-15

目录

    /

    返回文章
    返回