留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机扰动情况下绳系卫星状态保持阶段的最优控制

王长青 张马林 王伟 李爱军 Y Zabolotnov

王长青, 张马林, 王伟, 李爱军, Y Zabolotnov. 随机扰动情况下绳系卫星状态保持阶段的最优控制[J]. 空间科学学报, 2014, 34(6): 881-886. doi: 10.11728/cjss2014.06.881
引用本文: 王长青, 张马林, 王伟, 李爱军, Y Zabolotnov. 随机扰动情况下绳系卫星状态保持阶段的最优控制[J]. 空间科学学报, 2014, 34(6): 881-886. doi: 10.11728/cjss2014.06.881
Wang Changqing, Zhang Malin, Wang Wei, Li Aijun, Y Zabolotnov. Optimal control for state-keeping stage of tethered satellite with random perturbation[J]. Journal of Space Science, 2014, 34(6): 881-886. doi: 10.11728/cjss2014.06.881
Citation: Wang Changqing, Zhang Malin, Wang Wei, Li Aijun, Y Zabolotnov. Optimal control for state-keeping stage of tethered satellite with random perturbation[J]. Journal of Space Science, 2014, 34(6): 881-886. doi: 10.11728/cjss2014.06.881

随机扰动情况下绳系卫星状态保持阶段的最优控制

doi: 10.11728/cjss2014.06.881
基金项目: 2011年度国家国际科技合作专项和陕西省科学技术研究发展计划项目(2013KW09-02)共同资助
详细信息
    通讯作者:

    张马林,zml_now@163.com

  • 中图分类号: V448.2

Optimal control for state-keeping stage of tethered satellite with random perturbation

  • 摘要: 在考虑系绳弹性的情况下, 建立绳系卫星轨道面内运动的动力学模型, 并在系统平衡位置线性化, 得到绳系子星在随机扰动作用下的稳态保持状态方程. 引入基于卡尔曼滤波的状态估计方法和最优状态反馈控制策略, 提出了保持系统稳态运行的控制方法, 并以YES2空间系绳试验为参考模型设计了稳态保持控制系统. 分别在不考虑系绳弹性和考虑系绳弹性的系统模型下进行相应仿真分析, 结果表明所提出的控制方法能使系统具有良好的抗干扰性能, 系绳控制张力变化平缓且幅值小, 提高了系统状态保持阶段的可靠性和安全性. 同时系绳刚度系数的减小可使系绳纵向振动加剧, 但对横向摆动影响较小, 这为选取合适的系绳材料提供了理论参考.

     

  • [1] Li Qiang. Study on Space Tethered Satellite System Dynamic Modeling and Simulation[D]. Changsha: National University of Defense Technology, 2007. In Chinese (李强. 空间绳系卫星系统动力学建模与仿真研究[D]. 湖南长沙: 国防科技大学, 2007)
    [2] Aslanov V, Ledkov A. Dynamics of Tethered Satellite Systems[M]. Russia: Woodhead Publishing Ltd., 2012
    [3] Liaw D C, Abed E H. Stabilization of Tethered Satellites during Station-keeping[R]. College Park, MD: University of Maryland, 1990
    [4] Misra A K. Dynamics and control of tethered satellite systems[J]. Acta Astron., 2008, 63:1169-1177
    [5] Wong B, Misra A K. Dynamics of Lagrangian point multi-tethered satellite systems[J]. Astron. Sci., 2005, 53(3):50-221
    [6] Larsen M B, Blanke M. Control by damping injection of electrodynamic tether system in an inclined orbit[C]//The 2009 American Control Conference, USA, 2009
    [7] Liu Gang, Huang Jing, Ma Guangfu, Li Chuanjiang. Nonlinear dynamics and station-keeping control of a rotating tethered satellite system in halo orbits[J]. Chin. J. Aeron., 2013, 26(5):1227-1237
    [8] He Yong, Liang Bin, Xu Wenfu. Study on the stability of tethered satellite system[J]. Acta Astron., 2011, 68(11/12):1964-1972
    [9] Michael Athans. The Role and Use of the Stochastic Linear Quadratic Gaussian Problem in Control System Design[J]. Autom. Contr., 1971, 16:529-552
    [10] Wang Wei. Study on the Dynamics and Control of the Tethered Satellite[D]. Beijing: Tsinghua University, 2008. In Chinese (王维. 绳系卫星的动力学与控制研究[D]. 北京: 清华大学, 2000)
    [11] Peng Xiaofei. Dynamics and Control of Tether-net Capture System[D]. Harbin: Harbin Institute of Technology, 2010. In Chinese (彭晓飞. 绳网捕获系统的动力学及控制[D]. 哈尔滨: 哈尔滨工业大学, 2010)
    [12] Williams P, Hyslop A, Stelzer M, Kruijff M. YES2 optimal trajectories in presence of eccentricity and aerodynamic drag[J]. Acta Astron., 2009, 64:745-769
  • 加载中
计量
  • 文章访问数:  1055
  • HTML全文浏览量:  1
  • PDF下载量:  10660
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-17
  • 修回日期:  2014-05-19
  • 刊出日期:  2014-11-15

目录

    /

    返回文章
    返回