留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地球弓激波的三维模拟

胡慧萍 吕建永 周全 王明 杨亚芬 刘子谦 裴世鑫

胡慧萍, 吕建永, 周全, 王明, 杨亚芬, 刘子谦, 裴世鑫. 地球弓激波的三维模拟[J]. 空间科学学报, 2015, 35(1): 1-8. doi: 10.11728/cjss2015.01.001
引用本文: 胡慧萍, 吕建永, 周全, 王明, 杨亚芬, 刘子谦, 裴世鑫. 地球弓激波的三维模拟[J]. 空间科学学报, 2015, 35(1): 1-8. doi: 10.11728/cjss2015.01.001
Hu Huiping, LÜ Jianyong, Zhou Quan, Wang Ming, Yang Yafen, Liu Ziqian, Pei Shixin. Simulation of three-dimensional Earth's bow shock[J]. Chinese Journal of Space Science, 2015, 35(1): 1-8. doi: 10.11728/cjss2015.01.001
Citation: Hu Huiping, LÜ Jianyong, Zhou Quan, Wang Ming, Yang Yafen, Liu Ziqian, Pei Shixin. Simulation of three-dimensional Earth's bow shock[J]. Chinese Journal of Space Science, 2015, 35(1): 1-8. doi: 10.11728/cjss2015.01.001

地球弓激波的三维模拟

doi: 10.11728/cjss2015.01.001
基金项目: 国家自然科学基金项目(41031063),公益性行业(气象)科研专项(201106011),江苏省自然科学基金项目(BK2011829)和2012年江苏省普通高校研究生科研创新计划(CXLX120513)共同资助
详细信息
  • 中图分类号: P353

Simulation of three-dimensional Earth's bow shock

  • 摘要: 利用磁流体动力学(MHD)全球模拟结果,根据弓激波的跃变特性确定出弓激波位置,建立了一个新的综合考虑了快磁声马赫数、太阳风动压、行星际磁场强度以及磁层顶曲率半径的弓激波三维位型模型.将新模型与以往模型的模拟结果进行比较发现,新的弓激波全球模型结果可靠,解决了部分现有模型不能描述弓激波三维位型的问题.研究结果表明,在行星际磁场北向时,随着快磁声马赫数的增大,弓激波日下点距离减小,但是在行星际磁场南向时,快磁声马赫数的变化对弓激波日下点距离影响不大;弓激波位型在赤道面与子午面上存在明显的不对称性,而且随着行星际磁场的转向,这种非对称性也会发生相应改变;行星际磁场南向,Bz值较小时,子午面内弓激波位型已经不是简单的抛物线,出现了明显的类似于极尖区磁层顶的凹陷变化区.

     

  • [1] Wang Jingsong, Lü Jianyong. Space Weather[M]. Beijing: China Meteorological Press, 2010. In Chinese (王劲松, 吕建永. 空间天气学[M]. 北京: 气象出版社, 2010)
    [2] Fairfield D H. Average and unusual locations of the Earth's magnetopause and bow shock[J]. J. Geophys. Res., 1971, 76:6700
    [3] Slavin J A, Holzer R E. Solar wind flow about the terrestrial planets[J]. J. Geophys. Res., 1981, 86:11401-11418
    [4] Farris M H, Petrinec S M, Russell C T. The thickness of the magnetosheath-Constraints on the polytropic index[J]. Geophys. Res. Lett., 1991, 18:1821-1824
    [5] Russell C T, Zhang T L. Unusually distant bow shock encounters at Venus[J]. Geophys. Res. Lett., 1992, 19:833
    [6] Verigin M, Kotova G A, Shutte N, et al. Quantitative model of the Martian magnetopause shape and its variation with the solar wind ram pressure based on Phobos-2 observations[J]. J. Geophys. Res., 1997, 102(A2):2147-2156
    [7] Cairns I H, Lyon J G. MHD simulations of Earth's bow shock at low Mach numbers: Standoff distances[J]. J. Geophys. Res., 1995, 10:17173-17180
    [8] Peredo M, Slavin J A, Mazur E, et al. Three-dimensional position and shape of the bow shock and their variation with Alfvénic, sonic, and magnetosonic Mach numbers and the interplanetary magnetic field orientation[J]. J. Geophys. Res., 1995, 100:7907-7916
    [9] Chapman J F, Cairns I H. Three-dimensional modeling of Earth's bow shock: Shock shape as a function of Alfvén Mach number[J]. J. Geophys. Res., 2003, 108:1174
    [10] Chapman J F, Cairns I H. MHD simulations of Earth's bow shock: Interplanetary magnetic field orientation effects on shape and position[J]. J. Geophys. Res., 2004, 109:A04215
    [11] Julian H, Seiff A, Canning T N, et al. Gas Dynamics in Space Exploration[M]. Washington: The United States Government Printing Office, 1962
    [12] Spreiter J R, Briggs B R. Theoretical determination of the form of the boundary of the solar corpuscular stream produced by interaction with the magnetic dipole field of the Earth[J]. J. Geophys. Res., 1962, 67:37
    [13] Farris M H, Russell C T. Determining the standoff distance of the bow shock: Mach number dependence and use of models[J]. J. Geophys. Res., 1994, 99:17681-17689
    [14] Lavraud B, Borovsky J E. Altered solar wind-magnetosphere interaction at low Mach numbers: Coronal mass ejections[J]. J. Geophys. Res., 2008, 113:A00B08
    [15] Bennett L, Kivelson M G, Khurana, K K, et al. A model of the Earth's distant bow shock[J]. J. Geophys. Res., 1997, 102:26927, doi: 10.1029/97JA01906
    [16] Chao J K, Wu D J, Lin C H, et al. Models for the size and shape of the Earth's magnetopause and bow shock[J]. Proc. COSPAR Colloq., 2002, 12:127-135
    [17] Hu Youqiu, Peng Zhong, Wang Chi. Rotational asymmetry of Earth's bow shock[J]. Chin. J. Geophys., 2010, 53(4):773-781. In Chinese (胡友秋, 彭忠, 王赤. 地球弓激波的旋转飞对称性[J]. 地球物理学报, 2010, 53(4):773-781)
    [18] Tóth G, Sokolov I V, Gombosi T I, et al. Space Weather Modeling Framework: A new tool for the space science community[J]. J. Geophys. Res., 2005, A12226
    [19] Powell K G, Roe P L, Linde T J, et al. A solution-adaptive upwind scheme for ideal magnetohydrodynamics[J]. J. Comput. Phys., 1999, 154:284-309
    [20] De Zeeuw D L, Sazykin S, Wolf R A, et al. Coupling of a global MHD code and an inner magnetospheric model: Initial results[J]. J. Geophys. Res., 2004, A12219
    [21] Lü J Y, Liu Z Q, Kabin K, Jing H, Zhao M X, Wang Y. The IMF dependence of the magnetopause from global MHD/simulations[J]. J. Geophys. Res., 2013, 118:3113-3125
    [22] Verigin M, Kotova G A, Szabo A, et al. Wind observations of the terrestrial bow shock: 3-D shape and motion[J]. Earth Planet. Space, 2001, 53(10):1001-1009
  • 加载中
计量
  • 文章访问数:  1519
  • HTML全文浏览量:  43
  • PDF下载量:  1274
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-24
  • 修回日期:  2014-07-08
  • 刊出日期:  2015-01-15

目录

    /

    返回文章
    返回