留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低轨卫星的气动特性预测与分析

黄飞 赵波 程晓丽 吕俊明

黄飞, 赵波, 程晓丽, 吕俊明. 低轨卫星的气动特性预测与分析[J]. 空间科学学报, 2015, 35(1): 69-76. doi: 10.11728/cjss2015.01.069
引用本文: 黄飞, 赵波, 程晓丽, 吕俊明. 低轨卫星的气动特性预测与分析[J]. 空间科学学报, 2015, 35(1): 69-76. doi: 10.11728/cjss2015.01.069
HUANG Fei, ZHAO Bo, CHENG Xiaoli, LÜ Junming. Numerical Investigation of Aerodynamics on Low Earth Orbit Satellite[J]. Chinese Journal of Space Science, 2015, 35(1): 69-76. doi: 10.11728/cjss2015.01.069
Citation: HUANG Fei, ZHAO Bo, CHENG Xiaoli, LÜ Junming. Numerical Investigation of Aerodynamics on Low Earth Orbit Satellite[J]. Chinese Journal of Space Science, 2015, 35(1): 69-76. doi: 10.11728/cjss2015.01.069

低轨卫星的气动特性预测与分析

doi: 10.11728/cjss2015.01.069
详细信息
  • 中图分类号: V211.25

Numerical Investigation of Aerodynamics on Low Earth Orbit Satellite

  • 摘要: 针对低轨卫星高空自由分子流区的飞行环境特征,采用GOCE卫星典型弹道下的气动数据对DSMC仿真方法进行了算例验证,并就CLL模型下不同物面反射系数对GOCE卫星流场特征及气动特性的预测差异进行了对比分析,给出不同物面反射系数对卫星阻力预测的定量差异.结果表明,本文方法所得气动阻力与文献结果吻合较好,能够在此飞行区域给出合理的气动阻力;当反射系数从0.1逐渐变化至1.0时,卫星流场的驻点区域、尾部方向舵区域压力分布逐渐从带状结构向扇形结构过渡;在所研究的工况下,随着物面反射系数的增加,摩阻系数预测结果偏大,压阻系数预测结果偏小,总阻力先增加后减小,约在反射系数0.8附近达到最大.

     

  • [1] Evers W J. GOCE dynamical analysis and Drag Free Mode Control[R], DCT Report 2004.4
    [2] Doornbos E, Klinkrad H. Modeling of space weather effects on satellite drag[J]. Adv. Space Res., 2006, 37:1229-1239
    [3] Koppenwallner G. Satellite aerodynamics and determination of thermo-spheric density and wind[J]. AIP Conf. Proc., 2011, 1333:1307-1312
    [4] Di Cara D, Gonzalez del Amo J, Santovincenzo A. RAM Electric Propulsion for Low Earth Orbit Operation: an ESA Study[R], IEPC-2007-162
    [5] Koppenwallner G. Comment on special section: New perspectives on the satellite drag environments of Earth, Mars, and Venus[J]. J. Spacecr. Rockets, 2008, 45(6): 1324-1327
    [6] Kenneth M, Rice C J, Mildred M. Moe Simultaneous Analysis of Multi-instrument Satellite Density Data[R], AIAA 2003-570, 2003
    [7] Moore P, Sowter A. Application of a satellite aerodynamics model based on normal and tangential momentum accommodation coefficients[J]. Planet. Space Sci., 1991, 39: 1405-1419
    [8] Bushuev E I, Vasileva A I, Kameko V F. Investigation of upper atmospheric density and satellite aerodynamics on the basis of orbital evolution data[C]//Determination of Spacecraft Motion. Moscow, Izdatel'stvo Nauka, 1975: 168-182
    [9] Priester W, Roemer M, Volland H. The physical behavior of the upper atmosphere deduced from satellite drag data[J]. Space Sci. Rev., 1967, 6(6):707-780
    [10] Harrison I K, Swinerd G G. A free molecule aerodynamic investigation using multiple satellite analysis[J]. Planet. Space Sci., 1996, 44(2):171-180
    [11] Frank A M. Accuracy of atmospheric drag models at low satellite altitudes[J]. Adv. Space Res., 1990, 10(3/4):417-422
    [12] Carmen P, Tobiska W K, Anselmo L. Analysis of the orbital decay of spherical satellites using different solar flux proxies and atmospheric density models[C]//35th COSPAR Scientific Assembly. Paris, France: COSPAR, 2004
    [13] Zhou Weiyong, Zhang Yulin, Liu Kun. Aerodynamics analysis and reduced drag design for the lower LEO spacecraft[J]. J. Astron., 2010, 31(2):342-348. In Chinese (周伟勇, 张育林, 刘昆. 超低轨航天器 气动力分析与减阻设计[J]. 宇航学报, 2010, 31(2):342-348)
    [14] Canutoa E, Massottib L. All-propulsion design of the drag-free and attitude control of the European satellite GOCE[J]. Acta Astron., 2009, 64:325-344
    [15] Bird G A. molecular Gas Dynamics and Direct Simulation of Gas Flow[M]. London: Oxford University Press, 1994
    [16] Borganoff C, Larsen P S. Statistical collision model for Monte Carlo simulation of polyatomic gas mixture[J]. J. Comput. Phys., 1975, 18:405-420
  • 加载中
计量
  • 文章访问数:  1172
  • HTML全文浏览量:  49
  • PDF下载量:  1016
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-04
  • 修回日期:  2014-03-22
  • 刊出日期:  2015-01-15

目录

    /

    返回文章
    返回