留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SBV传感器的地球同步带目标监视系统星座设计

唐毅 钟文安 首俊明 李爽

唐毅, 钟文安, 首俊明, 李爽. 基于SBV传感器的地球同步带目标监视系统星座设计[J]. 空间科学学报, 2015, 35(1): 94-103. doi: 10.11728/cjss2015.01.094
引用本文: 唐毅, 钟文安, 首俊明, 李爽. 基于SBV传感器的地球同步带目标监视系统星座设计[J]. 空间科学学报, 2015, 35(1): 94-103. doi: 10.11728/cjss2015.01.094
TANG Yi, ZHONG Wenan, SHOU Junming, LI Shuang. Constellation Design for Geosynchronous Belt Surveillance System Based on the SBV Sensor[J]. Chinese Journal of Space Science, 2015, 35(1): 94-103. doi: 10.11728/cjss2015.01.094
Citation: TANG Yi, ZHONG Wenan, SHOU Junming, LI Shuang. Constellation Design for Geosynchronous Belt Surveillance System Based on the SBV Sensor[J]. Chinese Journal of Space Science, 2015, 35(1): 94-103. doi: 10.11728/cjss2015.01.094

基于SBV传感器的地球同步带目标监视系统星座设计

doi: 10.11728/cjss2015.01.094
基金项目: 总装备部青年科技基金项目资助
详细信息
  • 中图分类号: V556.5

Constellation Design for Geosynchronous Belt Surveillance System Based on the SBV Sensor

  • 摘要: 以天基可见光(Space-BasedVisible,SBV)传感器实现对整个地球同步带的监视为研究背景,对监视系统星座构型进行分析与设计.在分析三种观测模式优劣的基础上,给出了最优观测模式;导出了监视卫星轨道高度与搜索栅栏参数之间的关系,并以此确定了监视系统轨道高度的可选范围;通过分析影响天基可见光传感器观测时段和操作策略的因素,给出了SBV传感器的最优观测时段及成像时间的分配原则;在分析单星和双星监视系统方案覆盖率与重访次数的基础上,给出了监视系统卫星数目和搜索栅栏大小的选取原则以及满足回归性的双星监视系统轨道高度选取范围.研究结果表明,监视卫星经过天极附近时采用pinchpoints观测模式可有效提高对较大倾角地球同步轨道目标的覆盖能力,其轨道采用降交点在06:00LT或18:00LT时的太阳同步圆轨道,高度约在615~850km,且在此范围内有6条轨道满足星座回归性要求.

     

  • [1] Boeing Company. Space Based Space Surveillance: Revolutionizing Space Awareness[R]. Mission Brochure, 2010
    [2] Tang Yi, Wu Meiping, Li Xian, et al. Orbit design of space-based visible sensor satellite for monitoring the objects in geosynchronous belt[J]. Chin. J. Space Sci., 2012, 32(3): 560-566. In Chinese (唐毅, 吴美平, 李显, 等. 天基可见光传感器卫星监视地球同步带目标的轨道设计[J]. 空间科学学报, 2012, 32(3): 560-566)
    [3] Liu Lei. Study on the Initial Orbit Determination of Space Targets with Space-based Surveillance[D]. Changsha: National University of Defense Technology, 2009. In Chinese (刘磊. 基于天基监视的空间目标测向初轨确定研究[D]. 长沙: 国防科技大学研究生院, 2009)
    [4] Gaposchkin E, Braun C, Sharma J. Space-based space surveillance with the space-based visible[J]. J. Guid. Control Dyn., 2000, 23(1):148-152
    [5] Sharma J. Space-based Visible Space Surveillance Performance[J]. J. Guid. Control Dyn., 2000, 23(1):170-174
    [6] Sharma J, Stokes G, Braun C, et al. Toward operational space-based space surveillance[J]. Lincoln Labor. J., 2002, 13:309-334
    [7] Maskell P, Oram L. Sapphire: Canada's answer to space-based surveillance of orbital objects[C]//Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference. Hawaii, USA: AMOS, 2008
    [8] Soop E. Handbook of Geostationary Orbits[M]. Dordrecht, The Netherlands: Kluwer, 1994
    [9] Stokes G H, Braun C, Sridharan R, et al. The space-based visible program[J]. Lincoln Labor. J., 1998, 11:205-238
    [10] Yu Jianhui, Su Zengli, Tan Qian. Analysis on the space-based optic observation mode for space object[J]. Chin. J. Quant. Electron., 2006, 23(6):72-776. In Chinese (余建慧, 苏增立, 谭谦. 空间目标天基光学观测模式分析[J]. 量子电子学报, 2006, 23(6):772-776)
    [11] Utzmann J, Wagner A. Space-based space surveillance as complementary element in an SSA architecture[C]//European Space Surveillance Conference. Madrid, Spain, 2011
    [12] Oswald M, Stabroth S, Wagner A. Satellite-based solutions for beyond-LEO space surveillance[C]//5th European Space Debris Conference. Darmstadt, Germany: European Space Agency, 2009
    [13] Larson W, Wertz J. Space Mission Analysis and Design[M]. 3rd. ed. Dordrecht: Microcosm Press and Kluwer Academic Publishers, 2005
    [14] Gao Xin, Yang Shengsheng, Niu Xiaole, et al. Space radiation environments and dosimetry[J]. Vac. Cryog., 2007, 13(1):41-47
    [15] Newman A R. An Improved Scheduling Algorithm for Space-based Space Surveillance Sensors[D]. Massachusetts: Massachusetts Institute of Technology, 1993
    [16] Zhang Yulin, Fan Li, Zhang Yan, et al. Theory and Design of Satellite Constellations[M]. Beijing: Science Press, 2008
    [17] Vallado D A. Fundamentals of Astrodynamics and Applications[M]. 3rd ed. USA: Microcosm Press and Springer, 2007
    [18] Kozai Y. The motion of close Earth satellite[J]. Astron. J., 1959, 64:367-377
  • 加载中
计量
  • 文章访问数:  1508
  • HTML全文浏览量:  71
  • PDF下载量:  1189
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-25
  • 修回日期:  2014-04-22
  • 刊出日期:  2015-01-15

目录

    /

    返回文章
    返回