留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁层电场仪前端信号处理电路研究

胡云 周斌 赵华

胡云, 周斌, 赵华. 磁层电场仪前端信号处理电路研究[J]. 空间科学学报, 2015, 35(1): 104-109. doi: 10.11728/cjss2015.01.104
引用本文: 胡云, 周斌, 赵华. 磁层电场仪前端信号处理电路研究[J]. 空间科学学报, 2015, 35(1): 104-109. doi: 10.11728/cjss2015.01.104
Hu Yun, Zhou Bin, Zhao Hua. Research of the front-end signal processing circuit for the magnetospheric electric field instrument[J]. Chinese Journal of Space Science, 2015, 35(1): 104-109. doi: 10.11728/cjss2015.01.104
Citation: Hu Yun, Zhou Bin, Zhao Hua. Research of the front-end signal processing circuit for the magnetospheric electric field instrument[J]. Chinese Journal of Space Science, 2015, 35(1): 104-109. doi: 10.11728/cjss2015.01.104

磁层电场仪前端信号处理电路研究

doi: 10.11728/cjss2015.01.104
基金项目: 中国科学院空间科学战略性先导科技专项项目资助(XDA04060203)
详细信息
  • 中图分类号: P354;V1

Research of the front-end signal processing circuit for the magnetospheric electric field instrument

  • 摘要: 针对磁层稀薄等离子体环境中的电场测量,设计了一种电场仪前端信号处理电路方案.双探针电场仪通过向等离子体输出驱动电流,测量两探针间的电位差,从而测量空间电场的探测仪器.在磁层稀薄等离子体环境下,等离子体阻抗较高,电场仪探针将工作在较高的工作电压上.若探针电压接近或超过电路耐压值,则可能会影响探测结果,甚至损坏电场仪.本文结合低偏置电流的电压跟随方案和反馈悬浮电源控制方案,解决了稀薄等离子体环境中电场测量的弱电流采样和高动态电位处理问题,并采用低噪声元件和特殊电路设计,控制电路噪声.测试结果显示,本方案可使探针适应±100V的悬浮电位,实现150kHz带宽的电场信号测量,且噪声小于14nV·mHz-1/2,满足目前空间电场仪测量精度需求.

     

  • [1] Heppner J P, Maynard N C, Aggson T L. Early results from ISEE 1 electric field measurements[J]. Space Sci. Rev., 1978, 22:777-789
    [2] Pedersen A, Cattell C A. Quasistatic electric field measurements with spherical double probes on the GOES and ISEE satellites[J]. Space Sci. Rev., 1984, 37:269-312
    [3] Marklund G T, Blomberg L G, Lindqvist P A, et al. The double probe electric field experiment on FREJA: Experiment description and first results[J]. Space Sci. Rev., 1994, 70:483-508
    [4] Harvey P, Mozer F S, Pankow D, Wygant J, et al. The electric field instrument on the POLAR satellite[J]. Space Sci. Rev., 1995, 71:583-796
    [5] Bonnell J W, Mozer F S, Delory G T, et al. The Electric Field Instrument (EFI) for THEMIS[J]. Space Sci. Rev., 2008, 141:303-341
    [6] Reigber C, Lühr H, Schwintzer P. Announcement of opportunity for CHAMP[R], CH-GFZ-AO-001, 2001:24-25
    [7] Eriksson A I, Andr'e M, Klecker B, et al. Electric field measurements on Cluster: comparing the double-probe and electron drift techniques[J]. Ann. Geophys., 2006, 24:275-288
    [8] Wang Hongfei, Liu Yurong, Yan Zhen. Research of earthquake electromagnetic satellite mission planning system[J]. Chin. J. Space Sci., 2010, 30(6):620-625. In Chinese (王红飞, 刘玉荣, 阎镇. 地震电磁卫星任务规划系统研究[J]. 空间科学学报, 2010, 30(6):620-625)
    [9] Jiao Weixin. Space Probe[M]. Beijing: Beijing University Press, 2002:273-304. In Chinese (焦维新. 空间探测[M]. 北京: 北京大学出版社, 2002:273-304)
    [10] Ding Songhe, Liu Yenan, Zhou Bin. Design of diagnostic instrument for space environment plasma[C]//The 24th Space Probe Academic Exchange Conference. Xi'an: Chinese Society of Space Science, 2011. In Chinese (丁松鹤, 刘业楠, 周斌. 空间环境等离子体诊断仪器设计[C]//第二十四届空间探测学术交流会议. 西安: 中国空间科学学会, 2011)
    [11] Fahleson U. Theory of electric field measures conducted in the magnetosphere with electric probes[J]. Space Sci. Rev., 1967, 7:238-262
    [12] Harri Laakso, Thomas L. Aggson, et al. Plasma gradient effects on double-probe measurements in the magnetosphere[J]. Ann. Geophys., 1995, 13(2):130-146
  • 加载中
计量
  • 文章访问数:  800
  • HTML全文浏览量:  23
  • PDF下载量:  1003
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-23
  • 修回日期:  2014-05-04
  • 刊出日期:  2015-01-15

目录

    /

    返回文章
    返回