留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反向蒙特卡罗方法在卫星辐射分析中的研究与应用

兰婷 陈东 陈善强 师立勤 刘四清

兰婷, 陈东, 陈善强, 师立勤, 刘四清. 反向蒙特卡罗方法在卫星辐射分析中的研究与应用[J]. 空间科学学报, 2015, 35(2): 203-210. doi: 10.11728/cjss2015.02.203
引用本文: 兰婷, 陈东, 陈善强, 师立勤, 刘四清. 反向蒙特卡罗方法在卫星辐射分析中的研究与应用[J]. 空间科学学报, 2015, 35(2): 203-210. doi: 10.11728/cjss2015.02.203
Lan Ting, Chen Dong, Chen Shanqiang, Shi Liqin, Liu Siqing. Implementation of adjoint/reverse monte carlo method in the analysis of satellites radiation[J]. Journal of Space Science, 2015, 35(2): 203-210. doi: 10.11728/cjss2015.02.203
Citation: Lan Ting, Chen Dong, Chen Shanqiang, Shi Liqin, Liu Siqing. Implementation of adjoint/reverse monte carlo method in the analysis of satellites radiation[J]. Journal of Space Science, 2015, 35(2): 203-210. doi: 10.11728/cjss2015.02.203

反向蒙特卡罗方法在卫星辐射分析中的研究与应用

doi: 10.11728/cjss2015.02.203
详细信息
  • 中图分类号: P3

Implementation of adjoint/reverse monte carlo method in the analysis of satellites radiation

  • 摘要: 反向蒙特卡罗方法(AMC/RMC)是Geant4中一个强有力的偏置技术. 粒子产生于包含灵敏体的反向界面并在几何体中被反向追踪直至外界面或溢出能量阈值, 其计算时间只集中于对结果有贡献的粒子径迹. 与正向蒙特卡罗方法(FMC)相比, RMC更高效, 特别是当灵敏体远小于几何体其他部分和外界面时, 其优势更明显. 通过RMC与FMC的比较, 验证了RMC应用于卫星辐射剂量分析的准确性. RMC与SHIELDOSE2和SSAT的比较说明了RMC是高精度卫星辐射剂量的优选方法.

     

  • [1] Jiao Weixin. Space Weather[M]. Beijing: Meterological Press, 2003. In Chinese (焦维新. 空间天气学[M]. 北京: 气象出版社, 2003)
    [2] Tribble A C. The Space Environment[M]. Beijing: China Astronautic Publishing House, 2009. In Chinese (Tribble A C. 空间环境[M]. 北京: 中国宇航出版社, 2009)
    [3] Xu Shuyan. Application of Monte-Carlo Method in Experimental Nuclear Physics[M]. Beijing: The Atom Enegy Publishing House, 2006. In Chinese (许淑艳. 蒙特卡罗方法在实验 核物理中的应用[M]. 北京: 原子能出版社, 2006)
    [4] Kalos M H. Monte Carlo integration of the adjoint Gamma-Ray transport equation[J]. Nucl. Sci. Eng., 1968, 33:284-287
    [5] Eriksson B, Johansson C, Leimdorfer M. Monte Carlo integration of the adjoint neutron transport equation[J]. Nucl. Sci. Eng., 1969, 37:410-418
    [6] Jordan T. Space system analysis using the novice code system[C]//First European Conference on Radiation and its Effects on Devices and Systems. La Grande-Motte: IEEE, 1991:312-316
    [7] Desorgher L. Implementation of the reverse/adjoint Monte Carlo method into Geant4[J]. Nucl. Inst. Methods Phys. Res. Sect. A, 2010, 621 (1/2/3):247-257
    [8] Dong Shikui, Shuai Yong, Tan Heping, et al. m Computation of radiative heat transfer in participating media using Backward Monte Carlo method[J]. J. Harbin Inst. Technol., 2004, 36(12):1602-1604. In Chinese (董士奎, 帅永, 谈和平, 等. 反向蒙特卡罗法模拟参与性 介质中热辐射传递[J]. 哈尔滨工业大学学报, 2004, 36(12):1602-1604)
    [9] Qi Xueqin, Wang Pingyang, Zhang Jingzhou,, et al. m Reverse Monte Carlo simulation on infrared radiation of lobed nozzle/mixer plume[J]. J. Shanghai Jiaotong Univ., 2005, 39(8):1229-1239. In Chinese (亓雪琴, 王平洋, 张靖周, 等. 反向蒙特卡罗法模拟波瓣喷管 的红外辐射特性[J]. 上海交通大学学报, 2005, 39(8):1229-1239)
    [10] Shuai Yong, Dong Shikui, Liu Hualin. Simulation of infrared radiation characteristics of high temperature free-stream flow including particles by using backward Monte-Carlo method[J]. J. Infrared Millim. Waves, 2005, 24(2):100-104. In Chinese (帅永, 董士奎, 刘林华. 高温含粒子自由流红外辐射特性的反向蒙特卡罗法模拟[J]. 红外与毫米波学报, 2005, 24(2):100-104)
    [11] Lü Jianwei, Wang Qiang. Numerical calculation and simulation of infrared radiation characteristics of aircraft skin using RMC method[J]. Infrared Laser Eng., 2009, 38(2):232-237. In Chinese (吕建伟, 王强. 飞行器 蒙皮红外辐射特征的反向蒙特卡罗计算与分析方法[J]. 红外与激光工程, 2009, 38(2):232-237)
    [12] Vette J I. The AE-8 Trapped Electron Model Environment[R], NSSDC/WDC-A-R&S 91-24. Greenbelt, Maryland: NASA Goddard Space Flight Center, 1991
    [13] Seltzer S M. SHIELDOSE, A Computer Code for Space-Shielding Radiation Dose Calculations, National Bureau of Standards[R], NBS Technical Note 1116. Washington: U S. Government Printing Office, 1980
    [14] Seltzer S M. Updated calculations for routine space-shielding radiation dose estimates: SHIELDOSE-2[M]. Gaithersburg, MD: NIST Publication, 1994
    [15] Santin G. New Geant4 based simulation tools for space radiation shielding and effects analysis[J]. Nucl. Phys. B, 2003, 125:69-74
    [16] Seltzer S M. Conversion of depth-dose distributions from slab to spherical geometries for space-shielding applications[J]. IEEE Trans. Nucl. Sci., 1986, 33(6):1292-1297
    [17] ECSS Secretariat. Space engineering——Methods for the calculation of radiation received and its effects and a policy for design margins[S], ECSS-E-10-12. Noordwijk, The Netherlands: ESA, 2008
  • 加载中
计量
  • 文章访问数:  954
  • HTML全文浏览量:  19
  • PDF下载量:  1214
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-26
  • 修回日期:  2014-08-19
  • 刊出日期:  2015-03-15

目录

    /

    返回文章
    返回