留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhancement of High Energy Electron Fluxes and Variation of Atmospheric Electric Field in the Antarctic Region ormalsize

LI Renkang CHEN Tao LUO Jing ZHOU Limin HE Zhaohai WANG Chunqin SUN Yueqiang

LI Renkang, CHEN Tao, LUO Jing, ZHOU Limin, HE Zhaohai, WANG Chunqin, SUN Yueqiang. Enhancement of High Energy Electron Fluxes and Variation of Atmospheric Electric Field in the Antarctic Region ormalsize[J]. 空间科学学报, 2016, 36(1): 40-48. doi: 10.11728/cjss2016.01.040
引用本文: LI Renkang, CHEN Tao, LUO Jing, ZHOU Limin, HE Zhaohai, WANG Chunqin, SUN Yueqiang. Enhancement of High Energy Electron Fluxes and Variation of Atmospheric Electric Field in the Antarctic Region ormalsize[J]. 空间科学学报, 2016, 36(1): 40-48. doi: 10.11728/cjss2016.01.040
LI Renkang, CHEN Tao, LUO Jing, ZHOU Limin, HE Zhaohai, WANG Chunqin, SUN Yueqiang. Enhancement of High Energy Electron Fluxes and Variation of Atmospheric Electric Field in the Antarctic Region ormalsize[J]. Chinese Journal of Space Science, 2016, 36(1): 40-48. doi: 10.11728/cjss2016.01.040
Citation: LI Renkang, CHEN Tao, LUO Jing, ZHOU Limin, HE Zhaohai, WANG Chunqin, SUN Yueqiang. Enhancement of High Energy Electron Fluxes and Variation of Atmospheric Electric Field in the Antarctic Region ormalsize[J]. Chinese Journal of Space Science, 2016, 36(1): 40-48. doi: 10.11728/cjss2016.01.040

Enhancement of High Energy Electron Fluxes and Variation of Atmospheric Electric Field in the Antarctic Region ormalsize

doi: 10.11728/cjss2016.01.040
基金项目: Supported by the National Basic Research Program of China (2011CB811404), the Natural Science Foundation of China (40774081), the Specialized Research Fund for State Key Laboratories, and CAS-NSSC-135 project
详细信息
    通讯作者:

    CHEN Tao,E-mail:tchen@nssc.ac.cn

  • 中图分类号: P353

Enhancement of High Energy Electron Fluxes and Variation of Atmospheric Electric Field in the Antarctic Region ormalsize

Funds: Supported by the National Basic Research Program of China (2011CB811404), the Natural Science Foundation of China (40774081), the Specialized Research Fund for State Key Laboratories, and CAS-NSSC-135 project
More Information
    Corresponding author: CHEN Tao,E-mail:tchen@nssc.ac.cn
  • 摘要: High-energy electron precipitation in the high latitude regions enhances the ionization of the atmosphere, and subsequently increases the atmospheric conductivities and the vertical electric field of the atmosphere near the ground as well. The High-Energy Electron Flux (HEEF) data measured by the Fengyun-3 meteorological satellite are analyzed together with the data of near-surface atmospheric vertical electric field measured at the Russian Vostok Station. Three HEEF enhancements are identified and it is shown that when the HEEF increases to a certain level, the local atmospheric vertical electric field near the ground can increase substantially than usual. The response time of the electric field to HEEF enhancement is about 3.7 to 4 days.

     

  • [1] FARRELL W M, DESCH M D. Solar proton events and the fair weather electric field at ground[J]. Geophys. Res. Lett., 2002, 29(9):37-1-4
    [2] HOLZWORTH R H, MOZER F S. Direct evidence of solar-flare modification of stratospheric electric-fields[J]. J. Geophys. Res. Ocean. Atmos., 1979, 84(Nc1):363-367
    [3] REAGAN J B, MEYEROTT R E, EVANS J E, et al. The effects of energetic particle-precipitation on the atmospheric electric-circuit[J]. J. Geophys. Res. Oce. Atmos., 1983, 88(Nc6):3869-3878
    [4] FRANK-KAMENETSKY A V, TROSHICHEV O A, BURNS G B, et al. Variations of the atmospheric electric field in the near-pole region related to the interplanetary magnetic field[J]. J. Geophys. Res. Space Phys., 2001, 106(A1):179-190
    [5] TINSLEY B A. Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere[J]. Space Sci. Rev., 2000, 94(1-2):231-258
    [6] TINSLEY B A, BURNS G B, ZHOU L. The role of the global electric circuit in solar and internal forcing of clouds and climate[J]. Adv. Space Res., 2007, 40(7):1126-1139
    [7] TINSLEY B A, ZHOU L. Initial results of a global circuit model with variable stratospheric and tropospheric aerosols[J]. J. Geophys. Res. Atmos., 2006, 111(D16): 3505-3515
    [8] TINSLEY B A, ZHOU L M, LIU W P. The role of volcanic aerosols and relativistic electrons in modulating winter storm vorticity[J]. Adv. Space Res., 2012, 50(6):819-827
    [9] Roberts W O, Olson R H. Geomagnetic storms and wintertime 300-mb trough development in the North Pacific-North America Area[J]. J. Atmos. Sci., 1972, 30(1):135-140
    [10] TINSLEY B A, DEEN G W. Apparent tropospheric response to MeV-GeV particle-flux variations—a connection via electrofreezing of supercooled water in high-level clouds[J]. J. Geophys. Res. Atmos., 1991, 96(D12): 22283-22296
    [11] HAYS P B, ROBLE R G. A Quasi-static model of global atmospheric electricity: 1 The lower atmosphere[J]. J. Geophys. Res. Atmos., 1979, 84(A7):3291-3305
    [12] ROBLE R G, HAYS P B. A Quasi-static model of global atmospheric electricity: 2 Electrical coupling between the upper and lower atmosphere[J]. J. Geophys. Res.: Space Phys., 1979, 84(A12):7247-7256
    [13] KIRKLAND M W, TINSLEY B A, HOEKSEMA J T. Are stratospheric aerosols the missing link between tropospheric vorticity and Earth transits of the heliospheric current sheet[J]. J. Geophys. Res. Atmos., 1996, 101(D23): 29689-29699
    [14] MIRONOVA I, TINSLEY B, ZHOU L M. The links between atmospheric vorticity, radiation belt electrons, and the solar wind[J]. Adv. Space Res., 2012, 50(6):783-790
    [15] TINSLEY B A, HOEKSEMA J T, BAKER D N. Stratospheric volcanic aerosols and changes in air-earth current-density at solar-wind magnetic-sector boundaries as conditions for the Wilcox tropospheric vorticity effect[J]. J. Geophys. Res. Atmos., 1994, 99(D8):16805-16813
    [16] WEIMER D R. An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event[J]. J. Geophys. Res. Space Phys., 2001, 106(A1):407-416
    [17] WEIMER D R. A flexible, IMF dependent model of high—latitude electric potentials having "Space Weather" applications[J]. Geophys. Res. Lett., 1996, 23(18):2549-2552
    [18] FRAHM R A, Winningham J D, Sharber J R, et al. The diffuse aurora: A significant source of ionization in the middle atmosphere[J]. J. Geophys. Res. Atmos., 1997, 102(D23):28203-28214
    [19] LI X L, BAKER D N, KANEKAl S G, et al. Long term measurements of radiation belts by SAMPEX and their variations[J]. Geophys. Res. Lett., 2001, 28(20):3827-3830
    [20] LI X L, TEMERIN M, BAKER D N, et al. Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements[J]. Geophys. Res. Lett., 2001, 28(9):1887-1890
    [21] TINSLEY B A. A working hypothesis for connections between electrically-induced changes in cloud microphysics and storm vorticity, with possible effects on circulation[J]. Adv. Space Res., 2012, 50(6):791-805
    [22] FOLKMAR L M, KELLEY M C. A study of an observed and forecasted meteorological index and its relation to the interplanetary magnetic field[J]. Geophys. Res. Lett., 1977, 4(8):337-340
    [23] KNIVETON D R, TINSLEY B A. Daily changes in global cloud cover and Earth transits of the heliospheric current sheet[J]. J. Geophys. Res., 2004, 109(D11):839-856
    [24] ROLDUGIN V C, TINSLEY B A. Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations[J]. J. Atmos. Sol. Terr. Phys., 2004, 66(13-14):1143-1149
    [25] TU W, SELESNICK R, LI X, et al. Quantification of the precipitation loss of radiation belt electrons observed by SAMPEX[J]. J. Geophys. Res.: Space Phys., 2010, 115(A7):A07210
    [26] SIINGH D, GOPALAKRISHNAN V, SINGH R P, et al. The atmospheric global electric circuit: An overview[J]. Atmos. Res., 2007, 84(2):91-110
    [27] BAUMGAERTNER A J G, THAYER J P, NEELY R R, et al. Toward a comprehensive global electric circuit model: Atmospheric conductivity and its variability in CESM1 (WACCM) model simulations[J]. J. Geophys. Res. Atmos., 2013, 118(16):9221-9232
    [28] FUNKE B, BAUMGAERTNER A, CALISTO M, et al. Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study[J]. Atmos. Chem. Phys., 2011, 11(17):9089-9139
    [29] JACKMAN C H, McPeters R D. The effect of solar proton events on ozone and other constituents//Solar Variability and Its Effects on Climate[J]. Geophys. Monogr. Ser., 2013, 114:305-319
    [30] TINSLEY B A, YU F. Atmospheric ionization and clouds as links between solar activity and climate//Solar Variability and Its Effects on Climate[J].Geophys. Monogr. Ser., 2013, 114:321-339
  • 加载中
计量
  • 文章访问数:  1197
  • HTML全文浏览量:  30
  • PDF下载量:  1056
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-01
  • 修回日期:  2015-09-23
  • 刊出日期:  2016-01-15

目录

    /

    返回文章
    返回