留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exploring the Dynamic X-ray Universe: Scientific Opportunities for the Einstein Probe Mission

YUAN Weimin OSBORNE Julian P ZHANG Chen WILLINGALE Richard

YUAN Weimin, OSBORNE Julian P, ZHANG Chen, WILLINGALE Richard. Exploring the Dynamic X-ray Universe: Scientific Opportunities for the Einstein Probe Mission[J]. 空间科学学报, 2016, 36(2): 117-138. doi: 10.11728/cjss2016.02.117
引用本文: YUAN Weimin, OSBORNE Julian P, ZHANG Chen, WILLINGALE Richard. Exploring the Dynamic X-ray Universe: Scientific Opportunities for the Einstein Probe Mission[J]. 空间科学学报, 2016, 36(2): 117-138. doi: 10.11728/cjss2016.02.117
YUAN Weimin, OSBORNE Julian P, ZHANG Chen, WILLINGALE Richard. Exploring the Dynamic X-ray Universe: Scientific Opportunities for the Einstein Probe Mission[J]. Chinese Journal of Space Science, 2016, 36(2): 117-138. doi: 10.11728/cjss2016.02.117
Citation: YUAN Weimin, OSBORNE Julian P, ZHANG Chen, WILLINGALE Richard. Exploring the Dynamic X-ray Universe: Scientific Opportunities for the Einstein Probe Mission[J]. Chinese Journal of Space Science, 2016, 36(2): 117-138. doi: 10.11728/cjss2016.02.117

Exploring the Dynamic X-ray Universe: Scientific Opportunities for the Einstein Probe Mission

doi: 10.11728/cjss2016.02.117
基金项目: Supported by the Strategic Priority Research Programme on Space Science of the Chinese Academy of Sciences (XDA04061100)
详细信息
    通讯作者:

    YUAN Weimin,E-mail:wmy@nao.cas.cn

  • 中图分类号: P17

Exploring the Dynamic X-ray Universe: Scientific Opportunities for the Einstein Probe Mission

Funds: Supported by the Strategic Priority Research Programme on Space Science of the Chinese Academy of Sciences (XDA04061100)
More Information
    Corresponding author: YUAN Weimin,E-mail:wmy@nao.cas.cn
  • 摘要: Time-domain astrophysics will enter a golden era towards the end of this decade with the advent of major facilities across the electromagnetic spectrum and in the multi-messenger realms of gravitational wave and neutrino. In the soft X-ray regime, the novel micro-pore lobster-eye optics provides a promising technology to realise, for the first time, focusing X-ray optics for wide-angle monitors to achieve a good combination of sensitivity and wide field of view. In this context Einstein Probe, a soft X-ray all-sky monitor mission, was proposed and selected as a candidate mission of priority in the space science programme of the Chinese Academy of Sciences. This paper reviews the most important science developments and key questions in this field towards 2020 and beyond, and how to achieve them technologically. It also introduces the Einstein Probe mission, including its key science goals and mission definition, as well as some of the key technological issues.

     

  • [1] ESA. ‘Cosmic Vision’ Space Science for Europe (2015-2025)[R]. The Netherlands: ESA, 2005
    [2] GEHRELS N, CHINCARINI G, GIOMMI P, et al. The swift gamma-ray burst mission[J]. Astrophys. J., 2004, 611:1005-1020
    [3] GEHRELS N, CANNIZZO J K. How Swift is redefining time domain astronomy[J]. J. High Energy Astrophys., 2015, 7:2-11
    [4] MATSUOKA M, KAWASAKI K, UENO S, et al. The MAXI mission on the ISS: science and instruments for monitoring all-sky X-ray images[J]. Publ. Astron. Soc. Jpn., 2009, 61:999-1010
    [5] MIHARA T. Latest results of the MAXI mission[J]. Publ. Korean Astron. Soc., 2015, 30(2):559-563
    [6] KOMOSSA S, BADE N. The giant X-ray outbursts in NGC 5905 and IC 3599: follow-up observations and outburst scenarios[J]. Astron. Astrophys., 1999, 343(3):775-787
    [7] KOMOSSA S. Tidal disruption of stars by supermassive black holes: status of observations[J]. J. High Energy Astrophys., 2015, 7:148-157
    [8] BURROWS D N, KENNEA J A, GHISELLINI G, et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole[J]. Nature, 2011, 476:421-424
    [9] LIU F K, SHUO Li, KOMOSSA S. A milliparsec supermassive black hole binary candidate in the galaxy SDSS J120136.02+300305.5[J]. Astrophys. J., 2014, 786 (2):103-116
    [10] CIARDI B, LOEB A. Expected number and flux distribution of gamma-ray burst afterglows with high redshifts[J]. Astrophys. J., 2000, 540(2):687-696
    [11] BROMM V, LOEB A. High-redshift gamma-ray bursts from Population Ⅲ progenitors[J]. Astrophys. J., 2006, 642:382-388
    [12] HOSOKAWA T, OMUKAI K, YOSHIDA N, YORKE H W. Protostellar feedback halts the growth of the first stars in the Universe[J]. Science, 2011, 334:1250-1253
    [13] BUTLER N R, BLOOM J S, POZNANSKI D. The cosmic rate, luminosity function, and intrinsic correlations of long gamma-ray bursts[J]. Astrophys. J., 2010, 711:495-516
    [14] SODERBERG A M, BERGER E, PAGE K L, et al. An extremely luminous X-ray outburst at the birth of a supernova[J]. Nature, 2008, 453:469-474
    [15] KANEKO Y, RAMIREZ-RUIZ E, GRANOT J, et al. Prompt and afterglow emission properties of gamma-ray bursts with spectroscopically identified supernovae[J]. Astrophys. J., 2007, 654:385-402
    [16] HEISE J, ZAND J, KIPPEN M, et al. X-ray flashes and X-ray rich gamma ray bursts[C]//Gamma-Ray Bursts in the Afterglow Era. Berlin, Heidelberg: Springer, 2001:16-21
    [17] CORRAL-SANTANA J M, CASARES J, MUÑOZ-DARIAS T, et al. A black hole nova obscured by an inner disk torus[J]. Science, 2013, 339:1048-1051
    [18] FENDER R P, POOLEY G G, BROCKSOPP C, NEWELL S J. Rapid infrared flares in GRS 1915+105: evidence for infrared synchrotron emission[J]. Mon. Not. R. Astron. Soc., 1997, 290:L65-L69
    [19] CORBET R H D. Be/neutron star binaries: a relationship between orbital period and neutron star spin period[J]. Astron. Astrophys., 1984, 141:91-93
    [20] KNIGGE C, COE M, PODSIADLOWSKI P. Two populations of X-ray pulsars produced by two types of supernova[J]. Nature, 2011, 479:372-275
    [21] ACKERMANN M, AJELLO M, ALBERT A, et al. Fermi establishes classical novae as a distinct class of gamma-ray sources[J]. Science, 2014, 345:554-558
    [22] ROMANO P. Seven years with the swift supergiant fast X-ray transients project[J]. J. High Energy Astrophys., 2015, 7:126-136
    [23] MUNO M P, PFAHL E, BAGANOFF F K, et al. An overabundance of transient X-Ray Binaries within 1 parsec of the galactic center[J]. Astrophys. J., 2005, 622:L113-L116
    [24] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo[J]. Living Rev. Relat., 2016, arXiv:1304.0670v2. DOI: 10.1007/Irr-2016-1
    [25] TANVIR N, LEVAN A J, FRUCHTER A S, et al. A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B[J]. Nature, 2013, 500:547-549
    [26] ZHANG B. Early X-ray and optical afterglow of gravitational wave bursts from mergers of binary neutron stars[J]. Astrophys. J., 2013, 763:22-25
    [27] EVANS P, OSBORNE J P, KENNEA J A, et al. Swift follow-up of IceCube triggers, and implications for the Advanced-LIGO era[J]. Mon. Not. R. Astron. Soc., 2015, 448:2210-2223
    [28] EVANS P, FRIDRIKSSON J K, GEHRELS N, et al. Swift follow-up observations of candidate gravitational-wave transient events[J]. Astrophys. J., 2012, 203:28-42
    [29] EVANS P, OSBORNE J P, BEARDMORE A P, et al. 1SXPS: A deep Swift X-ray telescope point source catalog with light curves and spectra[J]. Astrophys. J., 2014, 210(Supp.):8-32
    [30] INOUE S, GRANOT J, O'BRIEN P T, et al. Gamma-ray burst science in the era of the Cherenkov Telescope Array[J]. Astropart. Phys., 2013, 43:252-275
    [31] ANGEL J R P. Lobster eyes as X-ray telescopes[J]. Astrophys. J., 1979, 233:364-373
    [32] FRASER G W, CARPENTERA J D, ROTHERY D A, et al. The Mercury Imaging X-ray Spectrometer (MIXS) on bepicolombo[J]. Planet. Space Sci., 2010, 58:79-95
    [33] YUAN W, ZHANG C, FENG H, et al. Einstein Probe-a small mission to monitor and explore the dynamic X-ray Universe[C]//Swift: 10 Years of Discovery. Trieste: SISSA, 2015:1-9
    [34] ZHAO D, ZHANG C, YUAN W, et al. Ray tracing simulations for the wide-field X-ray telescope of the Einstein Probe mission based on Geant4 and XRTG4[C]//SPIE, Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray 91444E. DOI: 10.1117/12.2055434
  • 加载中
计量
  • 文章访问数:  2124
  • HTML全文浏览量:  64
  • PDF下载量:  1879
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-18
  • 修回日期:  2016-01-22
  • 刊出日期:  2016-03-15

目录

    /

    返回文章
    返回