留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RVE模型的空间天线结构热稳定性优化设计与热变形分析

马健 肖刚 肖鹏飞 蔡亚宁 冉治国

马健, 肖刚, 肖鹏飞, 蔡亚宁, 冉治国. 基于RVE模型的空间天线结构热稳定性优化设计与热变形分析[J]. 空间科学学报, 2016, 36(3): 386-394. doi: 10.11728/cjss2016.03.386
引用本文: 马健, 肖刚, 肖鹏飞, 蔡亚宁, 冉治国. 基于RVE模型的空间天线结构热稳定性优化设计与热变形分析[J]. 空间科学学报, 2016, 36(3): 386-394. doi: 10.11728/cjss2016.03.386
MA Jian, XIAO Gang, XIAO Pengfei, CAI Yaning, RAN Zhiguo. Thermal Stability Optimization Design and Thermal Deformation Analysis of Space Antenna Structure Based on Representative Volume Element Method[J]. Journal of Space Science, 2016, 36(3): 386-394. doi: 10.11728/cjss2016.03.386
Citation: MA Jian, XIAO Gang, XIAO Pengfei, CAI Yaning, RAN Zhiguo. Thermal Stability Optimization Design and Thermal Deformation Analysis of Space Antenna Structure Based on Representative Volume Element Method[J]. Journal of Space Science, 2016, 36(3): 386-394. doi: 10.11728/cjss2016.03.386

基于RVE模型的空间天线结构热稳定性优化设计与热变形分析

doi: 10.11728/cjss2016.03.386
基金项目: 国家自然科学基金项目资助(2011CB606105)
详细信息
    作者简介:

    马健,E-mail:majian0508@163.com

  • 中图分类号: V414

Thermal Stability Optimization Design and Thermal Deformation Analysis of Space Antenna Structure Based on Representative Volume Element Method

  • 摘要: 空间环境温度变化会使空间天线支撑结构产生热变形,影响其使用性能,因此进行天线热稳定性设计及热变形分析具有重要的意义.基于代表性体积单元(Representative Volume Element,RVE)方法对空间天线结构进行热稳定性设计与热变形分析.通过建立纤维随机分布并含有材料孔隙的RVE,得到纤维热膨胀系数.对M40/TDE85单向复合材料的热膨胀性能进行实验测试,计算结果与测试结果吻合良好,验证了RVE模型的正确性与准确性.建立了复合材料圆管参数化模型,根据计算得到的热膨胀系数及优化算法,对天线支撑结构进行热稳定性优化设计,并对优化后的天线结构进行热致变形分析,结果表明优化后的结构具有很高的热稳定性.

     

  • [1] YUAN Jiajun. Design and Analysis of Satellite Structures[M]. Beijing:China Astronautic Press, 2004(袁家军. 卫星结构设计与分析[M]. 北京:中国宇航出版社, 2004)
    [2] LIU Zhenyu, FENG Jisheng, ZHANG Qingjun. Optimization design for coefficient of thermal expansion of a space deployable truss[J]. Spacecraft Eng., 2012, 21(3):35-40(刘振玉, 冯纪生, 张庆君. 一种空间可展开桁架结构杆件热膨胀系数的优化设计[J]. 航天器工程, 2012, 21(3):35-40)
    [3] LIU Guoqing, RUAN Jianhua, LUO Wenbo, et al. Research on thermal deformation analysis and test verification method for spacecraft high-stability structure[J]. Spacecraft Eng., 2014, 23(2):64-70(刘国青, 阮剑华, 罗文波, 等. 航天器高稳定结构热变形分析与试验验证方法研究[J]. 航天器工程, 2014, 23(2):64-70)
    [4] MA Huitao LI Jindong. Integrated thermal-structural analytical technology for space structure with large-scale and complicated construction[J]. J. Astron., 2008, 29(2):413-419(麻慧涛, 李劲东. 大型复杂空间结构机-热集成分析技术研究[J]. 宇航学报, 2008, 29(2):413-419)
    [5] ISLAM M D R, SJ"OLIND S G, PRAMILA A. Finite ele-ment analysis of linear thermal expansion coefficients of unidirectional cracked composites[J]. J. Compos. Mater., 2001, 35:1762-76
    [6] DAVIS H. Microstructure organization in para-aramid fibers[J]. Textile Res. J., 2000, 70(11):945-950
    [7] RUPNOWSKI P, GENTZA M, SUTTERB J K, et al. An evaluation on the elastic properties and thermal expansion coefficients of medium and high modulus graphite fi-bers[J]. Composites: A, 2005, 36(3):327-38
    [8] SHEN Y L. Thermal expansion of metal-ceramic composites:a three dimensional analysis[J]. Mater. Sci. Eng., 1998, 252:269-275
    [9] MOHAJERJASBI S. Prediction for coefficients of thermal expansion of 3-D braided composites[C]//37th Structure, Structural Dynamics and Materials Conference. Salt Lake City:AIAA, 1996:1812-1817
    [10] MITAL W K, MURTHY P L N. Characterizing the properties of a C/SiC composite using micromechanics ana-lysis[C]//19th AIAA Applied Aerodynamics Conference, 2001. DOI: 10.2514/6.2001-1363
    [11] FAROOQU J K, SHEIKH M A. Modeling the composite unit cell for predicting thermal transport[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials. Newport, Rhode Island:AIAA, 2006. DOI: 10.2514/6.2006-2197
    [12] LUA J, SANKAR J, PAI D. A four cell decomposition model for unbalanced woven fabric composites subjected to thermal-mechanical loading[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Structures, Structural Dynamics, and Materials and Co-located Confe-rences. Newport, Rhode Island:AIAA, 2006:1-22
    [13] WONGSTO A, LI S. Micromechanical finite element analysis of unidirectional fiber reinforced composites with fibres distributed at random over the transverse cross section[J]. Composites:A, 2005, 36(9):1246-1266
    [14] KRACH A, ADVANI S G. Influence of void shaper, void volume and matrix anisotropy on effective thermal conductivity of a three phase composite[J]. J. Compos. Mater., 1996, 30:933-946
    [15] MORENA L C, JAMES K V, BECK J. An introduction to the RADARSAT-2 mission[J]. Canada J. Remote Sens., 2004, 30(3):221-234
  • 加载中
计量
  • 文章访问数:  759
  • HTML全文浏览量:  2
  • PDF下载量:  923
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-08
  • 修回日期:  2016-01-05
  • 刊出日期:  2016-05-15

目录

    /

    返回文章
    返回