留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碲化铋基热电半导体晶体空间生长

陈炎 包晔峰 李小亚 周燕飞 陈立东

陈炎, 包晔峰, 李小亚, 周燕飞, 陈立东. 碲化铋基热电半导体晶体空间生长[J]. 空间科学学报, 2016, 36(4): 413-419. doi: 10.11728/cjss2016.04.413
引用本文: 陈炎, 包晔峰, 李小亚, 周燕飞, 陈立东. 碲化铋基热电半导体晶体空间生长[J]. 空间科学学报, 2016, 36(4): 413-419. doi: 10.11728/cjss2016.04.413
CHEN Yan, BAO Yefeng, LI Xiaoya, ZHOU Yanfei, CHEN Lidong. Space Growth of Bismuth Telluride Based Thermoelectric Semiconductive Crystals[J]. Chinese Journal of Space Science, 2016, 36(4): 413-419. doi: 10.11728/cjss2016.04.413
Citation: CHEN Yan, BAO Yefeng, LI Xiaoya, ZHOU Yanfei, CHEN Lidong. Space Growth of Bismuth Telluride Based Thermoelectric Semiconductive Crystals[J]. Chinese Journal of Space Science, 2016, 36(4): 413-419. doi: 10.11728/cjss2016.04.413

碲化铋基热电半导体晶体空间生长

doi: 10.11728/cjss2016.04.413
基金项目: 中国科学院空间科学战略性先导科技专项(XDA04020202-11-1)和中国载人空间站工程项目(TGJZ80701-2-RW024)共同资助
详细信息
    作者简介:

    李小亚,xyli@mail.sic.ac.cn

  • 中图分类号: V524

Space Growth of Bismuth Telluride Based Thermoelectric Semiconductive Crystals

  • 摘要: 碲化铋基热电半导体是中低温区高性能热电材料,在热电致冷、电子器件精确控温领域获得了重要应用,且在更多领域具有广泛应用前景.碲化铋基材料通常采用区熔法制备,材料的性能优值ZT约为0.8.应用要求进一步提高其ZT值.合金化和掺杂优化是提高碲化铋基材料性能的有效途径,但会使得材料的化学成分越来越复杂.重力条件下区熔的固有问题是,重力导致的浮力对流和壁附效应凸显,使区熔碲化铋基材料成分和性能波动较大.空间微重力可以消除重力导致的浮力对流和壁附效应,有望提高碲化铋基材料的成分均匀性和热电性能.本文根据碲化铋基材料空间微重力下区熔生长研究状况,对实践十号科学实验卫星和天宫二号空间实验室将开展的碲化铋基材料空间微重力区熔生长研究进行了分析.

     

  • [1] DEHKORDI A M, ZEBARJADI M, HE J. Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials[J]. Mat. Sci. Eng. R., 2015, 97:1-22
    [2] PATEL M M, SONI P H, DESAI C F. Growth and characterization of Bi2-xSbxTe3 (x=0~0.2) single crys-tals[J]. J. Cryst. Growth, 2015, 432:33-36
    [3] LIU Y F, ZHOU M H, HE J. Towards higher thermoelectric performance of Bi2Te3 via defect engineering[J]. Scripta Mater., 2016, 111:39-43
    [4] GREENAWAY D L, HARBEKE G. B and structure of bismuth telluride, bismuth selenide and their respective alloys[J]. J. Phys. Chem. Solids, 1965, 26:1585-1604
    [5] NAKAJIMA S. The crystal structure of Bi2Te3-xSe_x[J]. J. Phys. Chem. Solids, 1963, 24:479-485
    [6] BEKEBREDE W R, GUENTERT O J. Lattice parameters in the system antimony telluride bismuth telluride[J]. J. Phys. Chem. Solids, 1962, 23:1023-1025
    [7] KOENIG F K. Zone melting of Bi0.5Sb1.5Te3 crystals under microgravity[J]. Cryst. Res. Technol., 1998, 33:219-232
    [8] ZHOU Y F, LI X Y, BAI S Q, et al. Comparison of space- and ground-grown Bi2Se0.21Te2.79 thermoelectric crys-tals[J]. J. Cryst. Growth, 2010, 312:775-780
    [9] BARBER P G, BERRY R F, DEBNAM W J, et al. Growth-rates and interface shapes in germanium and lead-yin telluride observed in-situ, real-time in vertical Bridgmanfurnaces[J]. J. Cryst. Growth, 1995, 147:83-90
    [10] CORIELL S R, BOISVERT R F, REHM R G, et al. Lateral solute segregation during unidirectional solidification of a binary alloy with a curved solid-liquid interface: Ⅱ. Large departures from planarity[J]. J. Cryst. Growth, 1981, 54:167-175
    [11] JIANG J, CHEN L D, YAO Q, et al. Effect of TeI4 content on the thermoelectric properties of n-type Bi-Te-Se crystals prepared by zone melting[J]. Mater. Chem. Phys., 2005, 92:39-42
    [12] JIANG J, CHEN L D, BAI S Q, et al. Fabrication and thermoelectric performance of textured n-type Bi2 (Te, Se)3 by spark plasma sintering[J]. Mater. Sci. Eng.: B, 2005, 117:334-338
    [13] ZHOU Yanfei, LI Xiaoya, CHEN Li dong. Low temperature thermoelectric properties of n-type Bi2Te3-base crystals grown under microgravity[C]//Proceedings of the 2011 Academic Forum of the Space Material Professional Committee, Chinese Society of Space Science. Yinchuan: Chinese Society of Space Science, 2011:12-15(周燕飞, 李小亚, 陈立东. 在微重力条件下生长n-型Bi2Te3基晶体的低温热电性能的研究[C].中国空间科学学会空间材料专业委员会2011年学术交流会. 银川: 中国空间科学学会, 2011:12-15)
  • 加载中
计量
  • 文章访问数:  1358
  • HTML全文浏览量:  122
  • PDF下载量:  974
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-10
  • 修回日期:  2016-04-20
  • 刊出日期:  2016-07-15

目录

    /

    返回文章
    返回