留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlCuMgZn单晶合金的空间凝固

罗兴宏 封少波 李洋

罗兴宏, 封少波, 李洋. AlCuMgZn单晶合金的空间凝固[J]. 空间科学学报, 2016, 36(4): 445-449. doi: 10.11728/cjss2016.04.445
引用本文: 罗兴宏, 封少波, 李洋. AlCuMgZn单晶合金的空间凝固[J]. 空间科学学报, 2016, 36(4): 445-449. doi: 10.11728/cjss2016.04.445
LUO Xinghong, FENG Shaobo, LI Yang. Solidification of AlCuMgZn Single Crystal in Space[J]. Chinese Journal of Space Science, 2016, 36(4): 445-449. doi: 10.11728/cjss2016.04.445
Citation: LUO Xinghong, FENG Shaobo, LI Yang. Solidification of AlCuMgZn Single Crystal in Space[J]. Chinese Journal of Space Science, 2016, 36(4): 445-449. doi: 10.11728/cjss2016.04.445

AlCuMgZn单晶合金的空间凝固

doi: 10.11728/cjss2016.04.445
基金项目: 中国载人空间站工程项目资助(TGJZ800-2-RW024)
详细信息
    作者简介:

    罗兴宏,xhluo@imr.ac.cn

  • 中图分类号: V524

Solidification of AlCuMgZn Single Crystal in Space

  • 摘要: 重力对合金凝固过程与缺陷形成具有重要影响.在常规地面条件下难以清晰揭示凝固过程中的重力效应及其作用规律,而在微重力环境中重力对熔体的作用以及对凝固过程的影响大大降低.利用天宫二号空间实验并结合地面对比实验,研究AlCuMgZn单晶合金在微重力和重力环境下枝晶生长形貌和特征参数差异以及成分偏析和缺陷形成的异同,揭示重力对枝晶生长过程和成分偏析等现象的影响及其在凝固缺陷形成中的作用.

     

  • [1] HU Zhuangqi, LIU Lirong, JIN Tao, et al. Development of the Ni-base single crystal superalloys[J]. Aeroengine, 2005, 31(3):1-7
    [2] WANG Lin, DONG Jianxin, YANG Chunjun, et al. Mechanisms for macro segregation freckles and their criteria[J]. Foundry Technol., 2007, 28(5):585-89
    [3] AL-JARBA K A, FUCHS G E. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy[J]. Mat. Sci. Eng.: A, 2004, 373(1/2):255-267
    [4] BECKERMANN C, GU J P, BOETTINGER W J. Deve-lopment of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy cas-tings[J]. Metall. Mater. Trans.: A, 2000, 31(10):2545-2557
    [5] MADISON J, SPOWART J, ROWENHORST D, et al. Modeling fluid flow in three-dimensional single crystal dendritic structures[J]. Acta Mater., 2010, 58(8):2864-2875
    [6] AUBURTIN P, WANG T, COCKCROFT S L, et al. Freckle formation and freckle criterion in superalloy cas-tings[J]. Metall. Mater. Trans.: B, 2000, 31(4):801-811
    [7] SUN Dongke, ZHU Mingfang, YANG Chaorong, et al. Modelling of dendritic growth in forced and natural convections[J]. Acta Phys. Sin., 2009, 58:285-291
    [8] ZHOU B H, JUNG H, MANGELINCK-NOEL N, et al. Comparative study of the influence of natural convection on directional solidification of Al-3.5 wt% Ni and Al-7 wt% Si alloys[J]. Adv. Space Res., 2008, 41(12):2112-2117
    [9] BANASZEK J, MCFADDEN S, BROWNE D J, et al. Natural convection and columnar-to-equiaxed transition prediction in a front-tracking model of alloy solidification[J]. Metall. Mater. Trans.: A, 2007, 38(7):1476-1484
    [10] TRIVEDI R, MIYAHARA H, MAZUMDER P, et al. Directional solidification microstructures in diffusive and convective regimes[J]. J. Cryst. Growth, 2001, 222(1/2):365-379
    [11] JIANG Mingwei, DU Weidong, SONG Changjiang, et al. Effects of specimen dimensions on directional solidification microstructure and interface stability of Al-4.5%Cu alloy[J]. Foundry, 2007, 56(12):1307-1309
    [12] ZHU C S, WANG Z P, GUI J, et al. Convection effect on dendritic growth using phase-field method[J]. China Foundry, 2010, 7(1):52-56
    [13] STEINBACH I. Pattern formation in constrained dendri-tic growth with solutal buoyancy[J]. Acta Mater., 2009, 57(9):2640-2645
    [14] TAN L J, ZABARAS N. Modeling the growth and inter-action of multiple dendrites in solidification using a level set method[J]. J. Comput. Phys., 2007, 226(1):131-155
    [15] YUAN L, LEE P D. Dendritic solidification under natural and forced convection in binary alloys: 2D versus 3D simu-lation[J]. Model. Simul. Mater. Sc., 2010, 18(5): 1277-1284
    [16] ASTA M, BECKERMANN C, KARMA A, et al. Solidification microstructures and solid-state parallels: Recent developments, future directions[J]. Acta Mater., 2009, 57(4):941-971
    [17] MA D X, BUHRIG-POLACZEK A. Avoiding grain defects in single crystal components by application of a heat conductor technique[J]. Int. J. Mater. Res., 2009, 100(8):1145-1151
    [18] YANG X L, NESS D, LEE P D, et al. Simulation of stray grain formation during single crystal seed melt-back and initial withdrawal in the Ni-base superalloy CMSX4[J]. Mat. Sci. Eng.: A, 2005, 413:571-577
    [19] GAO Sifeng, LIU Lin, HU Xiaowu, et al. Review of freckle defects under directional solidification of nickel-based superalloys[J]. J. Mat. Sci. Eng., 2010, 28(1):145-151
    [20] ZHOU Y F, LI XY, BAI S Q, et al. Comparison of space- and ground-grown Bi2Se0.21Te2.79 thermoelectric crystals[J]. J. Cryst. Growth, 2010, 312(6):775-780
    [21] OSTROGORSKY A G, MARIN C, VOLZ M, et al. Initial transient in Zn-doped InSb grown in microgravity[J].J. Cryst. Growth, 2009, 311(12):3243-3248
    [22] DE WILDE J, NAGELS E, LEMOISSON F, et al. Unconstrained growth along a ternary eutectic solidification path in Al-Cu-Ag: preparation of a MAXUS sounding rocket experiment[J]. Mat. Sci. Eng.: A, 2005, 413:514-520
    [23] CURRERI P A, LEE J E, STEFANESCU D M. Dendritic solidification of alloys in low gravity[J]. Metall. Trans.: A, 1988, 19 (11):2671-2676
    [24] YU H, TANDON K N, CAHOON J R. Solidification of hypereutectic Al-38 wt% pct Cu alloy in microgravity and in unit gravity[J]. Metall. Mater. Trans.: A, 1997, 28(5):1245-1250
    [25] HUANG Q, LUO X H, LI Y Y. An alloy solidification experiment conducted on Shenzhou spacecraft[J]. Adv. Space Res., 2005, 36(1):86-91
    [26] LUO X H, HUANG Q, LIU B D, et al. Al-Al3Ni eutectic alloy and Al/WC(Ni) composite directionally solidified under microgravity and normal gravity[J]. Adv. Space Res., 2003, 32(2):225-230
  • 加载中
计量
  • 文章访问数:  987
  • HTML全文浏览量:  70
  • PDF下载量:  790
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-10
  • 修回日期:  2016-04-18
  • 刊出日期:  2016-07-15

目录

    /

    返回文章
    返回