留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地面微重力条件下低温贮箱内相变和传热的数值仿真

李佳超 梁国柱

李佳超, 梁国柱. 地面微重力条件下低温贮箱内相变和传热的数值仿真[J]. 空间科学学报, 2016, 36(4): 513-519. doi: 10.11728/cjss2016.04.513
引用本文: 李佳超, 梁国柱. 地面微重力条件下低温贮箱内相变和传热的数值仿真[J]. 空间科学学报, 2016, 36(4): 513-519. doi: 10.11728/cjss2016.04.513
LI Jiachao, LIANG Guozhu. Numerical Simulation of Phase Change and Heat Transfer in Cryogenic Tank under the Ground Microgravity Condition[J]. Chinese Journal of Space Science, 2016, 36(4): 513-519. doi: 10.11728/cjss2016.04.513
Citation: LI Jiachao, LIANG Guozhu. Numerical Simulation of Phase Change and Heat Transfer in Cryogenic Tank under the Ground Microgravity Condition[J]. Chinese Journal of Space Science, 2016, 36(4): 513-519. doi: 10.11728/cjss2016.04.513

地面微重力条件下低温贮箱内相变和传热的数值仿真

doi: 10.11728/cjss2016.04.513
基金项目: 中国运载火箭技术研究院高校联合创新基金项目资助
详细信息
    通讯作者:

    梁国柱,E-mail:lgz@buaa.edu.cn

  • 中图分类号: V524

Numerical Simulation of Phase Change and Heat Transfer in Cryogenic Tank under the Ground Microgravity Condition

  • 摘要: 为了预测航天器低温推进剂在轨工作时受热后的状态变化,采用二维轴对称Volume of Fluid(VOF)气液两相流计算流体力学模型,同时选择Lee提出的气液相变模型.由于模拟试验采用低温液氮贮箱,因此本文采用低温液氮贮箱为数值仿真对象.微重力情况下,贮箱内气枕区的压力和压力上升率均低于地面状况,重力水平越低,压力和压力上升率越小,并且气体形成的气枕区位置和形状因表面张力大小随温度不同而动态变化,液体区间的温差也随重力水平的降低而增大.

     

  • [1] AYDELOTT J C. Effect of Gravity on Self-pressurization of Spherical Liquid-hydrogen Tankage[R]. NASA TN D-4286, 1967
    [2] PUROHIT G P, VU C C, DHIR V K. Transient lumped capacity thermodynamic model of satellite propel-lant tanks in micro-gravity[C]//37th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 1999
    [3] PANZARELLA C H, KASSEMI M. Self-pressurization of large spherical cryogenic tanks in space[J]. J. Spacecraft Rockets, 2005, 42(2):299-308
    [4] PANZARELLA C, PLACHTA D, KASSEMI M. Pressure control of large cryogenic tanks in microgravity[J]. Cryogenics, 2004, 44(6):475-483
    [5] VENKAT S, SHERIF S A. Self-pressurization and thermal stratification in a liquid hydrogen tank under var-ying gravity conditions[C]//Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2004:10844-54
    [6] CHEN L, LIANG G. Simulation research of vaporization and pressure variation in a cryogenic propellant tank at the launch site[J]. Microgravity Sci. Technol., 2013, 25(4):203-211
    [7] CHEN Liang, LIANG Guozhu, WEI Yi, et al. CFD simu-lation of cryogenic propellant tank pressure variation[J]. J. Aerospace Power, 2015, 30(6):1470-1477(陈亮, 梁国柱, 魏一, 等. 低温推进剂贮箱压力变化的CFD仿真[J]. 航空动力学报, 2015, 30(6):1470-1477)
    [8] WEI Yanming, PAN Hailin. The microgravity drop tower verification of surface tension tank-state equilibrium and reset of propellant[J]. Aerospace Control, 1998, 16(3):23-29(魏延明, 潘海林. 表面张力贮箱的微重力实验验证静平衡与重定位[J]. 航天控制, 1998, 16(3):23-29)
    [9] LI Zhangguo, LIU Qiusheng, JI Yan, et al. Numerical simulation of liquid-vapor interface tracking in tank of spacecraft[J]. Chin. J. Space Sci., 2008, 28(1):69-73(李章国, 刘秋生, 纪岩, 等. 航天器贮箱气液自由界面追踪数值模拟[J]. 空间科学学报, 2008, 28(1):69-73)
    [10] LIU Zhaomiao, ZHAO Tingting, SHEN Feng. The influence of gravity and contact angle of the liquid flow in the surface tension tank[J]. Chin. J. Theor. Appl. Mech., 2015, 47(3):430-440(刘赵淼, 赵婷婷, 申峰. 重力和接触角对表面张力贮箱内液体流动的影响[J]. 力学学报, 2015, 47(3):430-440)
    [11] ANSYS Incorporation. Fluent theory guide[EB/OL].[2010-04-05] https://su-ppo-rt.ansys.com/2010-04-05/2010
    [12] WANG Lei, LI Yangzhong, LI Cui, et al. Numerical study on temperature distribution of tank pressurization process of liquid rocket during outflow[J]. J. Aerospace Power, 2011, 26(9):1893-1899(王磊, 厉彦忠, 李翠, 等. 液体火箭贮箱增压排液过程温度场数值研究[J]. 航空动力学报, 2011, 26(8):1893-1899)
    [13] CHEN Guobang, HUANG Yonghua, BAO Rui. Cryogenic Fluid Thermophysical Properties[M]. Beijing: National Defense Industry Press, 2006:190-200(陈国邦, 黄永华, 包锐. 低温流体热物理性质[M]. 北京: 国防工业出版社, 2006:190-200)
    [14] SUN Dongliang, XU Jinliang, WANG Li. A vapor-liquid phase change model for two-phase boiling and condensation[J]. J. Xi'an Jiaotong Univ., 2012, 46(7):7-11(孙东亮, 徐进良, 王丽. 求解两相蒸发和冷凝问题的气液相变模型[J]. 西安交通大学学报, 2012, 46(7):7-11)
    [15] XU Jiyun. Boiling Heat Transfer and Gas Liquid Two-phase Flow[M]. Beijing: Atomic Energy Press, 2001:208-220(徐济鋆. 沸腾传热与气液两相流[M]. 北京: 原子能出版社, 2001:208-220)
    [16] STARK J A, BRADSHOW R D, BLATT M H. Low-g Fluid Behavior Technology Summaries[R]. NASA-CR-134746, 1974
    [17] GHIAASIAAN S M. Two-phase Flow, Boiling, and Condensation in Conventional and Miniature Systems[M]. Cambridge: Cambridge University Press, 2007
  • 加载中
计量
  • 文章访问数:  1057
  • HTML全文浏览量:  56
  • PDF下载量:  953
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-10
  • 修回日期:  2016-05-15
  • 刊出日期:  2016-07-15

目录

    /

    返回文章
    返回