留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间在轨流体输运稳定性落塔实验

陈小亮 高源 刘秋生

陈小亮, 高源, 刘秋生. 空间在轨流体输运稳定性落塔实验[J]. 空间科学学报, 2016, 36(4): 542-546. doi: 10.11728/cjss2016.04.542
引用本文: 陈小亮, 高源, 刘秋生. 空间在轨流体输运稳定性落塔实验[J]. 空间科学学报, 2016, 36(4): 542-546. doi: 10.11728/cjss2016.04.542
CHEN XiaoLiang, GAO Yuan, LIU Qiusheng. Drop Tower Experiment Study of Fluid Transport with Free Surface in Spacecraft[J]. Chinese Journal of Space Science, 2016, 36(4): 542-546. doi: 10.11728/cjss2016.04.542
Citation: CHEN XiaoLiang, GAO Yuan, LIU Qiusheng. Drop Tower Experiment Study of Fluid Transport with Free Surface in Spacecraft[J]. Chinese Journal of Space Science, 2016, 36(4): 542-546. doi: 10.11728/cjss2016.04.542

空间在轨流体输运稳定性落塔实验

doi: 10.11728/cjss2016.04.542
基金项目: 国家自然科学基金项目(11532015)和国家高技术研究发展计划项目(2014AA7045038)共同资助
详细信息
    通讯作者:

    刘秋生,E-mail:liu@imech.ac.cn

  • 中图分类号: V524

Drop Tower Experiment Study of Fluid Transport with Free Surface in Spacecraft

  • 摘要: 空间流体管理是微重力流体科学的重要研究方向之一,而有外力驱动的开口流道毛细流动界面稳定性研究是其重要的内容.设计研制了一种微重力双流道流体输运实验装置,采用的两个流道分别为截面相同的对称内角和非对称内角,并有相同的开口长度,在百米微重力落塔进行了10次双舱实验.通过分析不同流量下的液面特性,判定流动的类别,将流动形态分为亚临界、临界和超临界三种,确定了两个流道的临界流量,并对两个流道毛细流动的特征进行了比较.

     

  • [1] ROLLINS J R, GROVE R K, JAEKLE D E. Twenty-three years of surface tension propellant management system design, development, manufacture, test, and operation[J]. AIAA J., 1985, 9:17-177
    [2] JAEKLE D E. Propellant management device conceptual design and analysis: Vanes[C]//27th Joint Propulsion Conference, Joint Propulsion Conferences. Sacramento:AIAA, 1991
    [3] ROSENDAHL U, OHLHOFF A, DREYER M E, et al. Investigation of forced liquid flows in open capillary channels[J]. Microgravity Sci. Technol., 2002, 4:53-60
    [4] HAEBERLE S, ZENGERLE R. Microfluidic platforms for lab-on-a-chip applications[J]. Lab Chip, 2007, 7:1094-1110
    [5] CONRATH M, CANFILD P J, BRONOWICKI P M, et al. Capillary channel flow experiments aboard the international space station[J]. Phys. Rev., 2013, 88:1-8
    [6] HAAKE D, ROSENDAHL U, OHLHOFF A, et al. Flow rate limitation in open capillary channel flows[J]. Ann. N. Y. Acad. Sci., 2006, 1077(1):443-458
    [7] KLATTE J. Capillary Flow and Collapse in Wedge-Shaped Channels. Bremen[D]. Bremen: University of Bremen, 2011
    [8] WEI Xingyue. Research on Flow Characteristics in the Process of Tank Propellant Management of Spacecraft under Microgravity Conditions[D]. Changsha: National University of Defense Technology, 2013(魏月兴. 微重力条件下航天器贮箱推进剂管理过程中的流动特性研究[D]. 长沙: 国防科学技术大学, 2013)
    [9] ROSENDAHL U, OHLHOFF A, DREYER M E. Choked flows in open capillary channels: Theory, experiment and computations[J]. J. Fluid Mech., 2004, 518:187-214
    [10] ROSENDAHL U, GRAH A, DREYER M E. Convective dominated flows in open capillary channels[J]. Phys. Fluids, 2010, 22:1-13
    [11] CANFILD P J, BRONOWICKI P M, CHEN Y, et al. The capillary channel flow experiments on the international space station: Experiment set-up and fist results[J]. Exp. Fluids, 2013, 54:1-14
    [12] HAAKE D, KLATTE J, GRAH A, et al. Flow rate limitation of steady convective dominated open capillary channel flows through a groove[J]. Microgravity Sci. Technol., 2010, 22:129-138
    [13] GRAH A, DREYER M E. Dynamic stability analysis for capillary channel flow: One-dimensional and three-dimensional computations and the equivalent steady state technique[J]. Phys. Fluids, 2010, 22:1-11
    [14] BRONOWICKI P, CANFILD P, GRAH A, DREYER M. Free surfaces in open capillary channels-parallel plates[J]. Phys. Fluids, 2015, 27:1-21
  • 加载中
计量
  • 文章访问数:  1063
  • HTML全文浏览量:  84
  • PDF下载量:  1018
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-10
  • 修回日期:  2016-05-26
  • 刊出日期:  2016-07-15

目录

    /

    返回文章
    返回