留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小尺度重力波引起夜光云反照率变化的统计特征

郜海阳 张祖熠 卜令兵 霍朝阳 王震 朱红

郜海阳, 张祖熠, 卜令兵, 霍朝阳, 王震, 朱红. 小尺度重力波引起夜光云反照率变化的统计特征[J]. 空间科学学报, 2017, 37(1): 82-93. doi: 10.11728/cjss2017.01.082
引用本文: 郜海阳, 张祖熠, 卜令兵, 霍朝阳, 王震, 朱红. 小尺度重力波引起夜光云反照率变化的统计特征[J]. 空间科学学报, 2017, 37(1): 82-93. doi: 10.11728/cjss2017.01.082
GAO Haiyang, ZHANG Zuyi, BU Lingbing, HUO Chaoyang, WANG Zhen, ZHU Hong. Statistical Characteristics of Albedo Variation in Noctilucent Clouds Induced by Small-scale Gravity Waves[J]. Chinese Journal of Space Science, 2017, 37(1): 82-93. doi: 10.11728/cjss2017.01.082
Citation: GAO Haiyang, ZHANG Zuyi, BU Lingbing, HUO Chaoyang, WANG Zhen, ZHU Hong. Statistical Characteristics of Albedo Variation in Noctilucent Clouds Induced by Small-scale Gravity Waves[J]. Chinese Journal of Space Science, 2017, 37(1): 82-93. doi: 10.11728/cjss2017.01.082

小尺度重力波引起夜光云反照率变化的统计特征

doi: 10.11728/cjss2017.01.082
基金项目: 

国家自然科学基金项目(41304124,41305032),江苏省基础研究计划项目(BK20141480)和南京信息工程大学校科研启动费资助项目(2013X027)共同资助

详细信息
    通讯作者:

    郜海阳,E-mail:gaohy@nuist.edu.cn

  • 中图分类号: P356

Statistical Characteristics of Albedo Variation in Noctilucent Clouds Induced by Small-scale Gravity Waves

  • 摘要: 利用AIM卫星搭载的CIPS云成像探测器获得的云图数据,提取2008-2009年南北半球共6664个小尺度重力波(波长10~150km)个例,通过重力波区域与背景云层反照率变化值的对比分析,研究重力波引起云层反照率的变化特征.结果表明,重力波引起的反照率变化值以正值为主,最大平均值4.48×10-6sr-1出现在南半球降交轨道.反照率变化值与IWC变化值正相关,相关系数均在0.85以上.重力波引起的反照率变化呈现出很强的纬度和时间依赖性,且几乎均为正值.反照率变化值在中期阶段(冬/夏至日之后的50天)的高纬地区(>70°)更大,但在中期以外始末阶段的低纬地区(<70°)逐渐变小,甚至开始出现负值.随着背景云层的增强,反照率平均值呈线性增大,小尺度重力波能够引起背景云层反照率约14.6%~28.8%的变化量.当重力波引起的反照率周期性变化的振幅逐渐增大时,反照率变化值也线性增大,变化率约为0.909%~1.194%.南半球的变化率整体比北半球稍小,这与背景大气条件的差异有关

     

  • [1] GADSDEN M, SCHRODER W. Noctilucent Clouds[M]. Berlin:Springer-Verlag Press, 1989
    [2] THOMAS G E. Mesospheric clouds and the physics of the mesopause region[J]. Rev. Geophys., 1991, 29(4):553-575
    [3] GADSDEN M. The North-West Europe data on noctilucent clouds:a survey[J]. J. Atmos. Sol. Terr. Phys., 1998, 60 (12):1163-1174
    [4] THOMAS G E, OLIVERO J J, JENSEN E J, et al. Relation between increasing methane and the presence of ice clouds at the mesopause[J]. Nature, 1989, 338:490-492. DOI: 10.1038/338490a0
    [5] THOMAS G E. Are noctilucent clouds harbingers of glo-bal change in the middle atmosphere[J]. Adv. Space. Res., 2003, 32(9):1737-1746
    [6] DELAND M T, SHETTLE E P, THOMAS G E. A quarter-century of satellite polar mesospheric cloud observations[J]. J. Atmos. Sol. Terr. Phys., 2006, 68(1):9-29
    [7] LUBKEN F J, BERGER U. Latitudinal and inter hemispheric variation of stratospheric effects on mesospheric ice layer trends[J]. J. Geophys. Res., 2011, 116:D00P03. DOI: 10.1029/2010jd015258
    [8] TAYLOR M J, GADSDEN M, LOWE R P, et al. Mesospheric cloud observations at unusually low latitudes[J]. J. Atmos. Sol. Terr. Phys., 2002, 64(8/9/10/11):991-999
    [9] KIRKWOOD S, DALIN P, and RECHOU A. Noctilucent clouds observed from the UK and Denmark-trends and variations over 43 years[J]. Ann. Geophys., 2008, 26(5):1243-1254
    [10] DUBIETIS A, DALIN P, BALCIUNAS R, et al. Observations of noctilucent clouds from Lithuania[J]. J. Atmos. Sol. Terr. Phys., 2010, 72:1090-1099
    [11] PAUTET P D, STEGMAN J, WRASSE C M, et al. Analysis of gravity waves structures visible in noctilucent cloud images[J]. J. Atmos. Sol. Terr. Phys., 2011, 73(14/15):2082-2090
    [12] DUBIETIS A, DALIN P, BALCIUNAS R, et al. Noctilucent clouds:modern ground-based photographic observations by a digital camera network[J]. Appl. Opt., 2011, 50(28):72-79
    [13] JENSEN E J and THOMAS G E. Numerical simulations of the effects of gravity waves on noctilucent clouds[J]. J. Geophys. Res., 1994, 99:3421-3430
    [14] RAPP M, LUBKEN F J, MULLEMANN, et al. Small-scale temperature variations in the vicinity of PMC:experimental and model results[J]. J. Geophys. Res., 2002, 107 (D19):4392. DOI: 10.1029/2001JD001241
    [15] CHANDRAN A, RUSCH D W, THOMAS G E, et al. Atmospheric gravity wave effects on polar mesospheric clouds:a comparison of numerical simulations from CARMA 2D with AIM observations[J]. J. Geophys. Res., 2012, 117:D20104. DOI: 10.1029/2012JD017794
    [16] GERRARD A J, KANE T J, ECKERMANN S D, et al. Gravity waves and mesospheric clouds in the summer middle atmosphere:a comparison of lidar measurements and ray modeling of gravity waves over Sondrestrom, Greenland[J]. J. Geophys. Res., 2004, 109:D10103. DOI: 10.1029/2002JD002783
    [17] GERRARD A J, KANE T J, THAYER J P. Noctilucent clouds and wave dynamics:observations at Sondrestrom, Greenland[J]. Geophys. Res. Lett., 1998, 25(15):2817-2820
    [18] THAYER J P, RAPP M, GERRARD A J, et al. Gravi-ty wave influences on Arctic mesospheric clouds as determined by a Rayleigh lidar at Sondrestrom, Greenland[J]. J. Geophys. Res., 2003, 108(D8):8449. DOI: 10.1029/2002JD002363
    [19] CHU X, YAMASHITA C, ESPY P J, et al. Responses of polar mesospheric cloud brightness to stratospheric gra-vity waves at the South Pole and Rothera, Antarctica[J]. J. Atmos. Sol. Terr. Phys., 2009, 71:434-445
    [20] WILMS H, RAPP M, HOFFMANN P, et al. Gravity wave influence on PMC:experimental results from ALOMAR, 69°N[J]. Atmos. Chem. Phys., 2013, 13:11951-11963
    [21] SCHOCH A. Thermal Structure and Gravity Waves in the Arctic Middle Atmosphere above ALOMAR (69.3N, 16.0 E)[D]. Leibniz-Institut für Atmosphärenphysik: Universität Rostock, 2007
    [22] INNIS J L, KLEKOCIUK A R, MORRIS R J, et al. A study of the relationship between stratospheric gravi-ty waves and polar mesospheric clouds at Davis Antarctica[J]. J. Geophys. Res., 2008, 113:D14102. DOI: 10.1029/2007JD009031
    [23] CHANDRAN A, RUSCH D W, MERKEL A W. et al. Polar mesospheric cloud structures observed from the cloud imaging and particle size experiment on the Aeronomy of Ice in the Mesosphere spacecraft:atmospheric gra-vity waves as drivers for longitudinal variability in polar mesospheric cloud occurrence[J]. J. Geophys. Res., 2010, 115:D13102. DOI: 10.1029/2009jd013185
    [24] LIU X, YUE J, XU J Y, et al. Gravity wave variations in the polar stratosphere and mesosphere from SOFIE/AIM temperature observations[J]. J. Geophys. Res., 2014, 119:7368-7381
    [25] RUSSELL J M, BAILEY S M, GORDLEY L L, et al. The Aeronomy of Ice in the Mesosphere (AIM) mission:overview and early science results[J]. J. Atmos. Sol. Terr. Phys., 2009, 71 (3/4):289-299
    [26] RUSCH D W, THOMAS G E, MCCLINTOCK W, et al. The cloud imaging and particle size experiment on the aeronomy of ice in the mesosphere mission:cloud morphology for the northern 2007 season[J]. J. Atmos. Sol. Terr. Phys., 2009, 71 (3/4):356-364
    [27] LUMPE J D, BAILEY S M, CARSTENS J N, et al. Retrieval of polar mesospheric cloud properties from CIPS:algorithm description, error analysis and cloud detection sensitivity[J]. J. Atmos. Sol. Terr. Phys., 2013, 104(2):167-196
    [28] CARSTENS J N, BAILEY S M, LUMPE J D, et al. Understanding uncertainties in the retrieval of polar mesospheric clouds from the cloud imaging and particle size experiment in the presence of a bright Rayleigh background[J]. J. Atmos. Sol. Terr. Phys., 2013, 104(2):197-212
    [29] CHANDRAN A, RUSCH D W, PALO S E, et al. Gravity wave observations in the summertime polar mesosphere from the Cloud Imaging and Particle Size (CIPS) expe-riment on the AIM spacecraft[J]. J. Atmos. Sol. Terr. Phys., 2009, 71(3/4):392-400
    [30] TAYLOR M J, PAUTET P D, ZHAO Y, et al. High-latitude gravity wave measurements in noctilucent clouds and polar mesospheric clouds[M]//Mangalathayil Ali Abdu, Dora Pancheva (Eds.), Aeronomy of the Earth's Atmosphere and Ionosphere, IAGA Special Sopron Book Series, 2011, 2(Part1):13. DOI: 10.1007/978-94-007-0326-1_7
    [31] ZHAO Y, TAYLOR M J, RANDALL C E, et al. Investigating seasonal gravity wave activity in the summer polar mesosphere[J]. J. Atmos. Sol. Terr. Phys., 2015, 127:8-20
    [32] LI Q, XU J Y, YUE J, et al. Statistical characteristics of gravity wave activities observed by an OH airglow imager at Xinglong, in northern China[J]. Ann. Geophys., 2011, 29:1401-1410
    [33] SUZUKI S, TSUTSUMI M, PALO S E, et al. Short-period gravity waves and ripples in the South Pole mesosphere[J]. J. Geophys. Res., 2011, 116(D19):D19109. DOI: 10.1029/2011jd015882
    [34] JIANG G Y, XU J Y, YUAN W, et al. A comparison of mesospheric winds measured by FPI and meteor radar located at 40N[J]. Sci. China.:Tech. Sci., 2012, 55:1245-1250
  • 加载中
计量
  • 文章访问数:  931
  • HTML全文浏览量:  52
  • PDF下载量:  1131
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-10
  • 修回日期:  2016-03-01
  • 刊出日期:  2017-01-15

目录

    /

    返回文章
    返回