留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

行星大气1~3000GHz微波-亚毫米波辐射模拟

付佳 王振占

付佳, 王振占. 行星大气1~3000GHz微波-亚毫米波辐射模拟[J]. 空间科学学报, 2017, 37(2): 192-201. doi: 10.11728/cjss2017.02.192
引用本文: 付佳, 王振占. 行星大气1~3000GHz微波-亚毫米波辐射模拟[J]. 空间科学学报, 2017, 37(2): 192-201. doi: 10.11728/cjss2017.02.192
FU Jia, WANG Zhenzhan. Simulation of Microwave and Sub-millimeter Wave Radiation from 1 to 3000GHz of Planetary Atmosphere[J]. Chinese Journal of Space Science, 2017, 37(2): 192-201. doi: 10.11728/cjss2017.02.192
Citation: FU Jia, WANG Zhenzhan. Simulation of Microwave and Sub-millimeter Wave Radiation from 1 to 3000GHz of Planetary Atmosphere[J]. Chinese Journal of Space Science, 2017, 37(2): 192-201. doi: 10.11728/cjss2017.02.192

行星大气1~3000GHz微波-亚毫米波辐射模拟

doi: 10.11728/cjss2017.02.192
基金项目: 

中国科学院国家空间科学中心五个重点培育方向“极端天气与全球变化卫星遥感观测研究”项目资助

详细信息
    作者简介:

    付佳,E-mail:fujia ucas@163.com

  • 中图分类号: P353

Simulation of Microwave and Sub-millimeter Wave Radiation from 1 to 3000GHz of Planetary Atmosphere

  • 摘要: 为模拟行星大气在微波elax-elax亚毫米波波段的辐射传输特性,利用逐线积分方法计算行星大气中各气体成分在1~3000GHz的吸收系数.基于HITRAN数据库中各气体分子的跃迁频率及线强等参数,有效模拟了各气体分子在此频段内的吸收特征,并与常用的微波elax-elax亚毫米波大气辐射传输模式进行对比.分析地球大气的组成及特性,利用辐射传输方程模拟临边探测方式下不同频段的大气辐射亮温.研究结果可为后续地球乃至行星大气成分探测模拟、频带选择以及大气成分廓线反演提供模型及理论依据.

     

  • [1] WU Ji, ZHU Guangwu, ZHAO Hua, et al. Overview of scientific objectives of China-Russia Joint Mars exploration program YH-1[J]. Chin. J. Space Sci., 2009, 29(5):449-455(吴季, 朱光武, 赵华, 等. 萤火一号火星探测计划的科学目标[J]. 空间科学学报, 2009, 29(5):449-455)
    [2] OWEN T, BIEMANN K, RUSHNECK D R, et al. The composition of the atmosphere at the surface of Mars[J]. J. Geophys. Res., 1977, 82(28):4635-4639
    [3] BARTH C A. The atmosphere of Mars[J]. Ann. Rev. Earth Planet. Sci., 1974, 2(1):333-367
    [4] SEIFF A. Structure of the atmospheres of Mars and Venus below 100 kilometers[J]. Adv. Space Res., 1987, 7(12):5-16
    [5] LI Xiaoying, CHEN Liangfu, SU Lin, et al. Overview of sub-millimeter limb sounding[J]. J. Remote Sens., 2013, 17(6):1325-1344(李小英, 陈良富, 苏林,等. 亚毫米波临边探测发展现状[J]. 遥感学报, 2013, 17(6):1325-1344)
    [6] LI J, ZHANG S W, JIANG J S, et al. In-orbit performance of Microwave Humidity Sounder (MWHS) of the Chinese FY-3 meteorological satellite[C]//Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Honolulu, HI:IEEE, 2010:574-577
    [7] LIVESEYN J, VAN SNYDERW, READW G, et al. Retrieval algorithms for the EOS Microwave Limb Sounder (MLS)[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44(5):1144-1155
    [8] LIEBE H J. An updated model for millimeter wave propagation in moist air[J]. Radio Sci., 1985, 20(5):1069-1089
    [9] BUEHLER S A, ERIKSSON P, KUHN T, et al. ARTS, the atmospheric radiative transfer simulator[J]. J. Quantit. Spectrosc. Radiat. Trans., 2005, 91(1):65-93
    [10] CLOUGH S A, SHEPHARD M W, MLAWER E J, et al. Atmospheric radiative transfer modeling:A summary of the AER codes[J]. J. Quantit. Spectrosc. Radiat. Trans., 2005, 91(2):233-244
    [11] GORDLEY L L, MARSHALL B T, CHU D A. LINEPAK:Algorithms for modeling spectral transmittance and ra-diance[J]. J. Quantit. Spectrosc. Radiat. Trans., 1994, 52(5):563-580
    [12] TAN K, LIAO Z, DU P, et al. Land surface temperature retrieval from Landsat 8 data and validation with geosensor network[J]. Earth Sci., 2017,11:20
    [13] HOCKING J, RAYER P, RUNDLE D, et al. RTTOV v11 Users Guide[M]. 2013:1-110
    [14] BAO Jinghua. The Principle of FY-3C Satellite Microwave Humidity and Temperature Sounder and Preli-minary Analysis on Its In-orbit Performance[D]. Beijing:University of Chinese Academy of Sciences, 2014:18-20(鲍靖华. FY-3C卫星微波湿温探测仪原理及在轨性能初步分析[D]. 北京:中国科学院大学, 2014:18-20)
    [15] SHI Guangyu. Atmospheric radiative transfer theory[J]. Adv. Earth Sci., 1991, 6(5):71-73(石广玉. 大气辐射传输学[J]. 地球科学进展, 1991, 6(5):71-73)
    [16] WANG Zhenzhan, BAO Jinghua, LI Yun, et al. Study on retrieval algorithm of ocean parameters for the HY-2 scanning microwave radiometer[J]. Eng. Sci., 2014, 16(6):70-82(王振占, 鲍靖华, 李芸, 等. 海洋二号卫星扫描辐射计海洋参数反演算法研究[J]. 中国工程科学, 2014, 16(6):70-82)
    [17] ENCRENAZ TH, BÉZARD B, CROVISIER J, et al. Detectability of molecular species in planetary and satellite atmospheres from their rotational transitions[J]. Planet. Space Sci., 1995, 43(12):1485-1516
    [18] LU P, ZHANG H, JING X W. The effects of different HITRAN versions on calculated long-wave radiation and uncertainty evaluation[J]. Acta Meteor. Sin., 2011, 26(3):389-398
    [19] ROTHMANL S, GORDONI E, BABIKOVY, et al. The HITRAN2012 molecular spectroscopic database[J]. J. Quantit. Spectrosc. Radiat. Trans., 2013, 130:4-50
  • 加载中
计量
  • 文章访问数:  1429
  • HTML全文浏览量:  87
  • PDF下载量:  1425
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-13
  • 修回日期:  2016-12-13
  • 刊出日期:  2017-03-15

目录

    /

    返回文章
    返回