留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳风动压脉冲结构与地磁急始关系研究

李玉鑫 解妍琼

李玉鑫, 解妍琼. 太阳风动压脉冲结构与地磁急始关系研究[J]. 空间科学学报, 2017, 37(6): 659-666. doi: 10.11728/cjss2017.06.659
引用本文: 李玉鑫, 解妍琼. 太阳风动压脉冲结构与地磁急始关系研究[J]. 空间科学学报, 2017, 37(6): 659-666. doi: 10.11728/cjss2017.06.659
LI Yuxin, XIE Yanqiong. Relationship between Dynamic Pressure Pulse and Geomagnetic Sudden Commencement[J]. Chinese Journal of Space Science, 2017, 37(6): 659-666. doi: 10.11728/cjss2017.06.659
Citation: LI Yuxin, XIE Yanqiong. Relationship between Dynamic Pressure Pulse and Geomagnetic Sudden Commencement[J]. Chinese Journal of Space Science, 2017, 37(6): 659-666. doi: 10.11728/cjss2017.06.659

太阳风动压脉冲结构与地磁急始关系研究

doi: 10.11728/cjss2017.06.659
基金项目: 

国家自然科学基金项目资助(41304146)

详细信息
    作者简介:

    解妍琼,yqxie@spaceweather.ac.cn

  • 中图分类号: P353

Relationship between Dynamic Pressure Pulse and Geomagnetic Sudden Commencement

  • 摘要: 针对1994-2011年的363例地磁急始事件,基于太阳风动压脉冲(DPP)结构自动识别算法确定是否有相应的太阳风动压脉冲结构事件与其相关联,进而针对太阳风动压脉冲结构地磁急始关联事件进行统计分析研究.研究结果显示:91%的地磁急始事件与DPP事件相关联,53%的地磁急始事件与行星际激波相关联,这表明太阳风动压脉冲结构是引起地磁急始更普遍的原因;引起地磁急始的太阳风动压脉冲结构事件约70%发生在行星际日冕物质抛射、共转相互作用区以及行星际日冕物质抛射和/或共转相互作用区相互作用形成的复杂抛射物等大尺度太阳风扰动结构中,且其平均动压变化幅度为3.9nPa,强太阳风动压脉冲结构事件占全体事件的42%;地磁急始事件变化幅度与太阳风动压脉冲变化幅度以及上下游动压平方根差之间存在明显的相关关系,相关系数分别为0.79和0.82,并且行星际磁场南向时相关性更强;太阳风动压脉冲结构事件持续时间、传播速度、动压变化幅度对地磁急始事件的持续时间有一定影响,但这些参数与地磁急始事件的相关关系较弱.研究结果可为基于太阳风动压脉冲结构特征参数开展地磁急始预报提供研究基础.

     

  • [1] WILKEN B, GOERTZ C K, BAKER D N, et al. The SSC on July 29, 1977, and its propagation within the magnetosphere[J]. J. Geophys. Res., 1982, 87(A8):5901-5910
    [2] TSURUTANI B T, GONZALEZ W D, GONZALEZ A L C, et al. Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle[J]. J. Geophys. Res., 1995, 100(A11):21717-21733
    [3] TAKEUCHI T, RUSSELL C T, ARAKI T. Effect of the orientation of interplanetary shock on the geomagnetic sudden commencement[J]. J. Geophys. Res., 2002, 107(A12):SMP 6-1-SMP 6-10
    [4] ARAKI T. A physical model of the geomagnetic sudden commencement[M]//Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves. Washington, DC:American Geophysical Union, 2013:183-200
    [5] CHAO J K, LEPPING R P. A correlative study of SSC's, interplanetary shocks, and solar activity[J]. J. Geophys. Res., 1974, 79(13):1799-1807
    [6] SMITH E J, SLAVIN J A, ZWICKL R D, et al. Sho-cks and storm sudden commencements[C]//Proceedings of the Chapman Conference on Solar Wind-Magnetosphere Coupling. Tokyo, Dordrecht:Terra Scientific Publishing Co., D. Reidel Publishing Co., 1986:345-365
    [7] WANG C, LI C X, HUANG Z H, et al. Effect of interplane-tary shock strengths and orientations on storm sudden commencement rise times[J]. Geophys. Res. Lett., 2006, 33(14):L14104
    [8] VEENADHARI B, SELVAKUMARAN R, SINGH R, et al. Coronal mass ejection-driven shocks and the associa-ted sudden commencements/sudden impulses[J]. J. Geophys. Res., 2012, 117(A4):A04210
    [9] DALIN P A, ZASTENKER G N, PAULARENA K I, et al. A Survey of large, rapid solar wind dynamic pressure changes observed by Interball-1 and IMP 8[J]. Ann. Geophys., 2002, 20(3):293-299
    [10] DING Liuguan, JIANG Yong, LI Chuanqi, et al. Response of geosynchronous magnetic field z component and geomagnetic to solar wind dynamic pressure change[J]. Chin. Geophys., 2011, 54(1):6-13
    [11] RUSSELL C T, GINSKEY M, PETRINEC S, et al. The effect of solar wind dynamic pressure changes on low and mid-latitude magnetic records[J]. Geophys. Res. Lett., 1992, 19(12):1227-1230
    [12] RUSSELL C T, GINSKEY M, PETRINEC S M. Sudden impulses at low-latitude stations:steady state response for northward interplanetary magnetic field[J]. J. Geophys. Res., 1994, 99(A1):253-261
    [13] RUSSELL C T, GINSKEY M, PETRINEC S M. Sudden impulses at low latitude stations:steady state response for southward interplanetary magnetic field[J]. J. Geophys. Res., 1994, 99(A7):13403-13408
    [14] ARAKI T, SHINBORI A. Relationship between solar wind dynamic pressure and amplitude of geomagnetic Sudden Commencement (SC)[J]. Earth Planets Space, 2016, 68:90
    [15] ZUO Pingbing, FENG Xueshang, XIE Yanqiong, et al. Automatic detection algorithm of dynamic pressure pul-ses in the solar wind[J]. Astrophys. J., 2015, 803(2):94
    [16] ZUO Pingbing, FENG Xueshang, XIE Yanqiong, et al. A statistical survey of dynamic pressure pulses in the solar wind based on WIND observations[J]. Astrophys. J., 2015, 808(1):83
    [17] SISCOE G L, FORMISANO V, LAZARUS A J. Relation between geomagnetic sudden impulses and solar wind pressure changes——an experimental investigation[J]. J. Geophys. Res., 1968, 73(15):4869-4874
    [18] OGILVIE K W, MCILWRAITH N, WILKERSON T D. Mass-energy spectrometer for space plasmas[J]. Rev. Sci. Instrum., 1968, 39(4):441-451
    [19] LI Changxing. Effect of the Interplanetary Shocks on Storm Sudden Commencements[D]. Beijing:Graduate Uni-versity of the Chinese Academy of Sciences, 2008
    [20] WANG C, LI H, RICHARDSON J D, et al. Interplanetary shock characteristics and associated geosynchronous magnetic field variations estimated from sudden impul-ses observed on the ground[J]. J. Geophys. Res., 2010, 115(A9):A09215
  • 加载中
计量
  • 文章访问数:  1102
  • HTML全文浏览量:  84
  • PDF下载量:  3167
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 修回日期:  2017-07-12
  • 刊出日期:  2017-11-15

目录

    /

    返回文章
    返回