留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CHAMP和GRACE-A/B反演大气密度数据评估分析

苗娟 任廷领 龚建村 刘四清 李志涛

苗娟, 任廷领, 龚建村, 刘四清, 李志涛. CHAMP和GRACE-A/B反演大气密度数据评估分析[J]. 空间科学学报, 2018, 38(2): 201-210. doi: 10.11728/cjss2018.02.201
引用本文: 苗娟, 任廷领, 龚建村, 刘四清, 李志涛. CHAMP和GRACE-A/B反演大气密度数据评估分析[J]. 空间科学学报, 2018, 38(2): 201-210. doi: 10.11728/cjss2018.02.201
MIAO Juan, REN Tingling, GONG Jiancun, LIU Siqing, LI Zhitao. Analysis and Verification of Thermospheric Density Derived from CHAMP and GRACE-A/B Accelerometer Data ormalsize[J]. Chinese Journal of Space Science, 2018, 38(2): 201-210. doi: 10.11728/cjss2018.02.201
Citation: MIAO Juan, REN Tingling, GONG Jiancun, LIU Siqing, LI Zhitao. Analysis and Verification of Thermospheric Density Derived from CHAMP and GRACE-A/B Accelerometer Data ormalsize[J]. Chinese Journal of Space Science, 2018, 38(2): 201-210. doi: 10.11728/cjss2018.02.201

CHAMP和GRACE-A/B反演大气密度数据评估分析

doi: 10.11728/cjss2018.02.201
基金项目: 

宇航动力学国家重点实验室开放基金项目资助(2016ADL-DW304)

详细信息
    作者简介:

    苗娟,E-mail:miaoj@nssc.ac.cn

  • 中图分类号: P351

Analysis and Verification of Thermospheric Density Derived from CHAMP and GRACE-A/B Accelerometer Data ormalsize

  • 摘要: 利用Colorado大学公开发布的2001-2008年CHAMP和GRACE-A/B三颗卫星加速度计反演的400km高度上的大气密度数据,以大气模式NLRMSISE-00为参考,分析反演数据与模式值的误差特点、产生误差的原因、密度的变化及合理性,并通过卫星轨道两行根数(TLE)的反演结果进行验证,主要结论如下.CHAMP密度值整体稍高于GRACE-A/B,CHAMP密度与模式值之间的误差整体小于GRACE-A/B,2007-2008年 GRACE-A/B与模式的相对误差变化起伏较大.2001年CHAMP与模式存在整体偏差,通过相似空间环境条件下的密度变化比对以及利用TLE的反演结果验证,确定2001年的CHAMP反演密度整体偏低.CHAMP及GRACE-A/B密度变化个例显示,卫星密度值会出现一些个性化特征,使用时应根据需求进行分析处理.研究结果可为合理应用该数据提供参考.

     

  • [1] JACCHIA L G. New Static Models of the Thermosphere and Exosphere with Empirical Temperature Profiles[R]. SAO Technical Report No. 313. Cambridge:Smithsonian Astrophysical Observatory, 1970
    [2] BERGER C, BIANCALE R, ILL M, et al. Improvement of the empirical thermospheric model DTM:DTM94——a comparative review of various temporal variations and prospects in space geodesy applications[J]. J. Geod., 1998, 72(3):161-178
    [3] BRUINSMA S, THUILLIER G, BARLIER F. The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary:accuracy and properties[J]. J. Atmos. Solar-Terr. Phys., 2003, 65(9):1053-1070
    [4] HEDIN A E. MSIS-86 thermospheric model[J]. J. Geophys. Res., 1987, 92(A5):4649-4662
    [5] HEDIN A E. Extension of the MSIS thermosphere model into the middle and lower atmosphere[J]. J. Geophys. Res., 1991, 96(A2):1159-1172
    [6] PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere:statistical comparisons and scientific issues[J]. J. Geophys. Res., 2002, 107(A12):SIA 15-1-SIA 15-16. DOI: 10.1029/2002JA009430
    [7] KALLMANN-BIJL H, BOYD R L F, LAGOW H, et al. CIRA 1961:Cospar International Reference Atmosphere 1961[R]. Amsterdam:North-Holland Publishing Company, 1961
    [8] BOWMAN B R, TOBISKA W K, MARCOS F A. A new empirical thermospheric density model JB2006 using new solar indices[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Keystone, Colorado:AIAA, 2006
    [9] BOWMAN B R, TOBISKA W K, MARCOS F A, et al. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Honolulu, Hawaii:AIAA, 2008
    [10] LEI Jiuhou, MATSUO T, DOU Xiankang, et al. Annual and semiannual variations of thermospheric density:EOF analysis of CHAMP and GRACE data[J]. J. Geophys. Res., 2012, 117(A1):A01310. DOI: 10.1029/2011Ja017324
    [11] STORZ M F, BOWMAN B R, BRANSON M J I, et al. High Accuracy Satellite Drag Model (HASDM)[J]. Adv. Space Res., 2005, 36(12):2497-2505
    [12] BRUINSMA S, FORBES J M, NEREM R S, et al. Thermosphere density response to the 20-21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data[J]. J. Geophys. Res., 2006, 111(A6):A06303
    [13] SUTTON E K, FORBES J M, NEREM R S. Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data[J]. J Geophys. Res., 2005, 110(A9):A09S40
    [14] LIU H, LÜHR H, HENIZE V, et al. Global distribution of the thermospheric total mass density derived from CHAMP[J]. J. Geophys. Res., 2005, 110(A4):A04301
    [15] LIU H, LÜHR H. Strong disturbance of the upper thermospheric density due to magnetic storms:CHAMP observations[J]. J. Geophys. Res., 2005, 110(A9):A09S29
    [16] LIU Jing, LIU Libo, ZHAO Biqiang, et al. Superposed epoch analyses of thermospheric response to CIRs:solar cycle and seasonal dependencies[J]. J. Geophys. Res., 2012, 117(A9):A00L10
    [17] MÜLLER S, LÜHR H, RENTZ S. Solar and magnetospheric forcing of the low latitude thermospheric mass density as observed by CHAMP[J]. Ann. Geophys., 2009, 27(5):2087-2099
    [18] ZHOU Yunliang, MA Shuying, LÜHR H, et al. Changes of thermospheric mass density and their relations with Joule heating and ring current index during Nov. 2003 superstorm CHAMP observations[J]. Chin. J. Geophys., 2007, 50(4):986-994(周云良, 马淑英, LÜHR H, 等. 2003年11月超强磁暴热层大气密度扰动及其与焦耳加热和环电流指数的关系elax——CHAMP卫星观测[J]. 地球物理学报, 2007, 50(4):986-994)
    [19] CHEN Guangming, XU Jiyao, WANG Wenbin, et al. A comparison of the effects of CIR-and CME-induced geomagnetic activity on thermospheric densities and spacecraft orbits:case studies[J]. J. Geophys. Res., 2012, 117(A8):A08315
    [20] WANG Hui, MAO Dandan, MA Shuying, et al. Substorm time ionospheric field-aligned currents as observed by CHAMP[J]. Chin. J. Geophys., 2010, 53(6):1256-1262(王慧, 毛丹丹, 马淑英, 等. 亚暴期间电离层场向电流的分布特征elax——CHAMP卫星观测[J]. 地球物理学报, 2010, 53(6):1256-1262)
    [21] LEI Jiuhou, THAYER J P, BURNS A G, et al. Wind and temperature effects on thermosphere mass density response to the November 2004 geomagnetic storm[J]. J. Geophys. Res., 2010, 115(A5):A05303
    [22] WANG Hongbo, ZHAO Changyin. Use CHAMP/STAR accelerometer data to evaluate atmospheric density models during solar maximum year[J]. Acta Astron. Sin., 2008, 49(2):168-178(汪宏波, 赵长印. 用CHAMP加速仪数据校验太阳活动峰年的大气模型精度[J]. 天文学报, 2008, 49(2):168-178)
    [23] WENG Libin, FANG Hanxian, JI Chunhua, et al. Comparison between the CHAMP/STAR derived thermospheric density and the NRLMSISE-00 model[J]. Chin. J. Space Sci., 2012, 32(5):713-719(翁利斌, 方涵先, 季春华, 等. 基于卫星加速度数据反演的热层大气密度与NRLMSISE-00模式结果的比较研究[J]. 空间科学学报, 2012, 32(5):713-719)
    [24] DOORNBOS E, KLINKRAD H, VISSER P. Use of two-line element data for thermosphere neutral density model calibration[J]. Adv. Space Res., 2008, 41(7):1115-1122
    [25] LEAN J L, PICONE J M, EMMERT J T, et al. Thermospheric densities derived from spacecraft orbits:application to the starshine satellites[J]. J. Geophys. Res., 2006, 111(A4):A04301. DOI: 10.1029/2005JA011399
    [26] EMMERT J T, PICONE J M, MEIER R R. Thermospheric global average density trends, 1967-2007, derived from orbits of 5000 near-Earth objects[J]. Geophys. Res. Lett., 2008, 35(5):L05101. DOI: 10.1029/2007GL032809
    [27] PICONE J M, EMMERT J T, LEAN J L. Thermospheric densities derived from spacecraft orbits:accurate processing of two-line element sets[J]. J. Geophys. Res., 2005, 110(A3):A03301. DOI: 10.1029/2004JA010585
    [28] REN Tingling, MIAO Juan, LIU Siqing, et al. Research on thermospheric densities derived from two-line element sets[J]. Chin. J. Space Sci., 2014, 34(4):426-433(任廷领, 苗娟, 刘四清, 等. 利用卫星两行轨道根数反演热层密度[J]. 空间科学学报, 2014, 34(4):426-433)
    [29] QI Yalong, LI Huijun, XIANG Jie, et al. Ballistic coefficient estimation of satellite in low earth orbit and atmosphere model error analysis[J]. Chin. J. Space Sci., 2014, 34(1):89-94(漆亚龙, 李汇军, 项杰, 等. 低轨航天器弹道系数估算及热层大气模型误差分析[J]. 空间科学学报, 2014, 34(1):89-94)
  • 加载中
计量
  • 文章访问数:  1080
  • HTML全文浏览量:  76
  • PDF下载量:  790
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-07
  • 修回日期:  2017-11-26
  • 刊出日期:  2018-03-15

目录

    /

    返回文章
    返回