留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多离子空间等离子体中快磁声波与粒子的回旋共振特性

肖晖 周庆华

肖晖, 周庆华. 多离子空间等离子体中快磁声波与粒子的回旋共振特性[J]. 空间科学学报, 2018, 38(3): 332-341. doi: 10.11728/cjss2018.03.332
引用本文: 肖晖, 周庆华. 多离子空间等离子体中快磁声波与粒子的回旋共振特性[J]. 空间科学学报, 2018, 38(3): 332-341. doi: 10.11728/cjss2018.03.332
XIAO Hui, ZHOU Qinghua. Gyroresonance between Fast Magnetosonic Waves and Particles in a Multi-ion Space Plasma[J]. Chinese Journal of Space Science, 2018, 38(3): 332-341. doi: 10.11728/cjss2018.03.332
Citation: XIAO Hui, ZHOU Qinghua. Gyroresonance between Fast Magnetosonic Waves and Particles in a Multi-ion Space Plasma[J]. Chinese Journal of Space Science, 2018, 38(3): 332-341. doi: 10.11728/cjss2018.03.332

多离子空间等离子体中快磁声波与粒子的回旋共振特性

doi: 10.11728/cjss2018.03.332
基金项目: 

国家自然科学基金项目(41674166)和湖南省教育厅资助科研项目(16K003)共同资助

详细信息
    作者简介:

    周庆华,E-mail:Zhouqinghua@csust.edu.cn

  • 中图分类号: P353

Gyroresonance between Fast Magnetosonic Waves and Particles in a Multi-ion Space Plasma

  • 摘要: 快磁声波是空间等离子体中一种接近垂直传播的右旋极化电磁波,能够在等离子体层内外传播.快磁声波与带电粒子的回旋共振相互作用能够导致高能电子随机加速和投掷角扩散、能量质子投掷角扩散等,从而影响辐射带高能带电粒子的动态过程.分别基于完整的色散关系和高密度近似的色散关系,在不同空间等离子体条件下研究多离子空间等离子体中不同传播角的快磁声波色散曲线,并计算了快磁声波与H+,He+和O+离子的最小共振能量.结果表明,当传播角较小时,采用高密度近似与采用完整色散关系计算的离子最小共振能量没有太大差别.在中低密度中强磁场空间等离子体中,传播角≥ 88°时高密度近似色散关系会带来很大的误差,因此应利用完整色散关系计算最小共振能量.

     

  • [1] RUSSELL C T, HOLZER R E, SMITH E J. OGO 3 observations of ELF noise in the magnetosphere:2. The nature of the equatorial noise[J]. J. Geophys. Res., 1970, 75(4):755-768
    [2] PERRAUT S, ROUX A, ROBERT P, et al. A systematic study of ULF waves above FH+ from GEOS 1 and 2 measurements and their relationships with proton ring distributions[J]. J. Geophys. Res., 1982, 87(A8):6219-6236
    [3] NĚMEC F, SANTOLÍK O, GEREOVÁ K, et al. Initial results of a survey of equatorial noise emissions observed by the Cluster spacecraft[J]. Planet. Space Sci., 2005, 53(1-3):291-298
    [4] TSURUTANI B T, FALKOWSKI B J, PICKETT J S, et al. Extremely intense ELF magnetosonic waves:a survey of polar observations[J]. J. Geophys. Res., 2014, 119(2):964-977
    [5] POKHOTELOV D, LEFEUVRE F, HORNE R B, et al. Survey of ELF-VLF plasma waves in outer radiation belt observed by Cluster STAFF-SA experiment[J]. Ann. Geophys., 2008, 26(11):3269-3277
    [6] MEREDITH N P, HORNE R B, ANDERSON R R. Survey of magnetosonic waves and proton ring distributions in the Earth's inner magnetosphere[J]. J. Geophys. Res., 2008, 113(A6):A06213
    [7] ZHOU Meng, NI Binbin, HUANG Shiyong, et al. Observation of large-amplitude magnetosonic waves at dipolarization fronts[J]. J. Geophys. Res., 2014, 119(6):4335-4347
    [8] CURTIS S A, WU C S. Gyroharmonic emissions induced by energetic ions in the equatorial plasmasphere[J]. J. Geophys. Res., 1979, 84(A6):2597-2607
    [9] LIU Kaijun, GARY S P, WINSKE D. Excitation of magnetosonic waves in the terrestrial magnetosphere:particle-in-cell simulations[J]. J. Geophys. Res., 2011, 116(A7):A07212
    [10] CHEN Lunjin, THORNE R M, JORDANOVA V K, et al. Global simulation of magnetosonic wave instability in the storm time magnetosphere[J]. J. Geophys. Res., 2010, 115(A11):A11222
    [11] XIAO Fuliang, ZHOU Qinghua, HE Zhaoguo, et al. Three-dimensional ray tracing of fast magnetosonic waves[J]. J. Geophys. Res., 2012, 117(A6):A06208
    [12] XIAO Fuliang, ZHOU Qinghua, HE Yihua, et al. Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes[J]. Geophys. Res. Lett., 2015, 42(18):7287-7294
    [13] ZHOU Qinghua, XIAO Fuliang, YANG Chang, et al. Excitation of nightside magnetosonic waves observed by Van Allen Probes[J]. J. Geophys. Res., 2014, 119(11):9125-9133
    [14] HORNE R B, THORNE R M, GLAUERT S A, et al. Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves[J]. Geophys. Res. Lett., 2007, 34(17):L17107
    [15] BORTNIK J, THORNE R M. Transit time scattering of energetic electrons due to equatorially confined magnetosonic waves[J]. J. Geophys. Res., 2010, 115(A7):A07213
    [16] LI Jinxing, NI Binbin, XIE Lun, et al. Interactions between magnetosonic waves and radiation belt electrons:comparisons of quasi-linear calculations with test particle simulations[J]. Geophys. Res. Lett., 2014, 41(14):4828-4834
    [17] HORNE R B, WHEELER G V, ALLEYNE H S C K. Proton and electron heating by radially propagating fast magnetosonic waves[J]. J. Geophys. Res., 2000, 105(A12):27597-27610
    [18] XIAO Fuliang, ZONG Qiugang, WANG Yongfu, et al. Generation of proton aurora by magnetosonic waves[J]. Sci. Rep., 2014, 4:5190
    [19] XIAO Fuliang, YANG Chang, SU Zhengpeng, et al. Wave-driven butterfly distribution of Van Allen belt relativistic electrons[J]. Nat. Commun., 2015, 6:8590
    [20] STIX T H. Waves in Plasmas[M]. New York:American Institute of Physics, 1992:56-57
    [21] LYONS L R. Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves[J]. J. Plasma Phys., 1974, 12(3):417-432
    [22] ALBERT J M. Evaluation of quasi-linear diffusion coefficients for whistler mode waves in a plasma with arbitrary density ratio[J]. J. Geophys. Res., 2005, 110(A3):A03218
    [23] SUMMERS D. Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere[J]. J. Geophys. Res., 2005, 110(A8):A08213
  • 加载中
计量
  • 文章访问数:  1950
  • HTML全文浏览量:  44
  • PDF下载量:  4324
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-12
  • 修回日期:  2017-10-08
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回