留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷而密的等离子体片及其对磁尾等离子体片分布特性的影响

柏诗晨 史全岐 田安民 张帅

柏诗晨, 史全岐, 田安民, 张帅. 冷而密的等离子体片及其对磁尾等离子体片分布特性的影响[J]. 空间科学学报, 2018, 38(4): 444-451. doi: 10.11728/cjss2018.04.444
引用本文: 柏诗晨, 史全岐, 田安民, 张帅. 冷而密的等离子体片及其对磁尾等离子体片分布特性的影响[J]. 空间科学学报, 2018, 38(4): 444-451. doi: 10.11728/cjss2018.04.444
BAI Shichen, SHI Quanqi, TIAN Anmin, ZHANG Shuai. Cold-dense Plasma Sheet and Its Impact on the Spatial Distributions of the Magnetotail Plasma Sheet ormalsize[J]. Chinese Journal of Space Science, 2018, 38(4): 444-451. doi: 10.11728/cjss2018.04.444
Citation: BAI Shichen, SHI Quanqi, TIAN Anmin, ZHANG Shuai. Cold-dense Plasma Sheet and Its Impact on the Spatial Distributions of the Magnetotail Plasma Sheet ormalsize[J]. Chinese Journal of Space Science, 2018, 38(4): 444-451. doi: 10.11728/cjss2018.04.444

冷而密的等离子体片及其对磁尾等离子体片分布特性的影响

doi: 10.11728/cjss2018.04.444
基金项目: 

国家自然科学基金项目(41574157,41628402,41774153)和山东大学(威海)青年未来学者计划项目(2017WHWLJH08)共同资助

详细信息
    作者简介:

    柏诗晨,E-mail:1257613649@qq.com

  • 中图分类号: P353

Cold-dense Plasma Sheet and Its Impact on the Spatial Distributions of the Magnetotail Plasma Sheet ormalsize

  • 摘要: 地球磁尾等离子体片在太阳风-磁层耦合过程中起着重要的作用,其中冷而密的等离子体片是地磁活动平静期太阳风等离子体进入磁层的重要区域.以往的研究通常没有利用局地探测数据针对冷而密的等离子体片发生率在地心太阳磁层坐标系(GSM)中xy平面分布的统计分析.本文利用GEOTAIL卫星1996-2016年的局地测量数据,给出了等离子体片密度、温度及冷而密的等离子体片发生率的二维分布.与温度具有晨昏对称分布不同,等离子体片数密度呈现明显的晨昏不对称性,并且冷而密的等离子体片发生率在晨侧较高.

     

  • [1] MCPHERRON R L. Physical processes producing magnetospheric substorms and magnetic storms[M]. London:Academic Press, 1991:593-739
    [2] TERASAWA T, FUJIMOTO M, MUKAI T, et al. Solar wind control of density and temperature in the near-Earth plasma sheet:WIND/GEOTAIL collaboration[J]. Geophys. Res. Lett., 1997, 24(8):935-938
    [3] FUJIMOTO M, TERASAWA T, MUKAI T, et al. Plasma entry from the flanks of the near-Earth magnetotail:Geotail observations[J]. J. Geophys. Res.:Space Phys., 1998, 103(A3):4391-4408
    [4] FUJIMOTO M, MUKAI T, KOKUBUN S. Cold-dense plasma sheet and hot-dense ions in the inner-magnetosphere[J]. Adv. Space Res., 2002, 30(10):2279-2288
    [5] THOMSEN M F, BOROVSKY J E, SKOUG R M, et al. Delivery of cold, dense plasma sheet material into the near-Earth region[J]. J. Geophys. Res.:Space Phys., 2003, 108(A4):1151
    [6] LAVRAUD B, THOMSEN M F, BOROVSKY J E, et al. Magnetosphere preconditioning under northward IMF:Evidence from the study of coronal mass ejection and corotating interaction region geoeffectiveness[J]. J. Geophys. Res.:Space Phys., 2006, 111(A9):A09208
    [7] GKIOULIDOU M, WANG C P, LYONS L R, et al. Formation of the Harang reversal and its dependence on plasma sheet conditions:rice convection model simulations[J]. J. Geophys. Res.:Space Phys., 2009, 114(A7):A07204
    [8] LAVRAUD B, THOMSEN M F, LEFEBVRE B, et al. Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF[J]. J. Geophys. Res.:Space Phys., 2006, 111(A5):A05211
    [9] SHI Q Q, ZONG Q G, ZHANG H, et al. Cluster observations of the entry layer equatorward of the cusp under northward interplanetary magnetic field[J]. J. Geophys. Res.:Space Phys., 2009, 114(A12):A12219
    [10] SHI Q Q, ZONG Q G, FU S Y, et al. Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times[J]. Nat. Commun., 2013, 4:1466
    [11] GOU X C, SHI Q Q, TIAN A M, et al. Solar wind plasma entry observed by cluster in the high-latitude magnetospheric lobes[J]. J. Geophys. Res.:Space Phys., 2016, 121(5):4135-4144
    [12] MAILYAN B, SHI Q Q, KULLEN A, et al. Transpolar arc observation after solar wind entry into the high-latitude magnetosphere[J]. J. Geophys. Res.:Space Phys., 2015, 120(5):3525-3534
    [13] SONG P, RUSSELL C T. Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field[J]. J. Geophys. Res.:Space Phys., 1992, 97(A2):1411-1420
    [14] LI W H, RAEDER J, DORELLI J, et al. Plasma sheet formation during long period of northward IMF[J]. Geophys. Res. Lett., 2005, 32(12):L12S08
    [15] MIURA A. Simulation of Kelvin-Helmholtz instability at the magnetospheric boundary[J]. J. Geophys. Res.:Space Phys., 1987, 92(A4):3195-3206
    [16] HASEGAWA H, FUJIMOTO M, PHAN T D, et al. Transport of solar wind into earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices[J]. Nature, 2004, 430(7001):755-758
    [17] HASEGAWA H, RETINÓ A, VAIVADS A, et al. Kelvin-Helmholtz waves at the Earth's magnetopause:Multiscale development and associated reconnection[J]. J. Geophys. Res.:Space Phys., 2009, 114(A12):A12207
    [18] ECHIM M M, LEMAIRE J. Positive density gradients at the magnetopause:interpretation in the framework of the impulsive penetration mechanism[J]. J. Atmos. Solar-Terr. Phys., 2002, 64(18):2019-2028
    [19] OLSON W P, PFITZER K A. Magnetospheric responses to the gradient drift entry of solar wind plasma[J]. J. Geophys. Res.:Space Phys., 1985, 90(A11):10823-10833
    [20] ZHOU X Z, PU Z Y, ZONG Q G, et al. Energy filter effect for solar wind particle entry to the plasma sheet via flank regions during southward IMF[J]. J. Geophys. Res.:Space Phys., 2007, 112(A6):A06233
    [21] WANG C P, LYONS L R, NAGAI T, et al. Evolution of plasma sheet particle content under different interplanetary magnetic field conditions[J]. J. Geophys. Res.:Space Phys., 2010, 115(A6):A06201
    [22] SPENCE H E, KIVELSON M G. Contributions of the low-latitude boundary layer to the finite width magnetotail convection model[J]. J. Geophys. Res.:Apace Phys., 1993, 98(A9):15487-15496
    [23] WANG C P, LYONS L R, NAGAI T, et al. Sources, transport, and distributions of plasma sheet ions and electrons and dependences on interplanetary parameters under northward interplanetary magnetic field[J]. J. Geophys. Res.:Space Phys., 2007, 112(A10):A10224
    [24] WING S, NEWELL P T. 2D plasma sheet ion density and temperature profiles for northward and southward IMF[J]. Geophys. Res. Lett., 2002, 29(9):21-1-21-4
    [25] ZHANG Shuai, TIAN Anmin, SHI Quanqi, et al. A statistical study of the plasma sheet in the near and middle earth magnetotail[J]. Chin. J. Geophys., 59(2):411-418, doi:10.6038/cjg20160201(张帅, 田安民, 史全岐, 等. 中近磁尾等离子体片统计特性研究[J]. 地球物理学报, 2016, 59(2):411-418, doi:10.6038/cjg20160201)
    [26] WANG C P, LYONS L R, WEYGAND J M, et al. Equatorial distributions of the plasma sheet ions, their electric and magnetic drifts, and magnetic fields under different interplanetary magnetic field B_z conditions[J]. J. Geophys. Res.:Space Phys., 2006, 111(A4):A04215.
    [27] KOKUBUN S, YAMAMOTO T, ACUNA M H, et al. The GEOTAIL magnetic field experiment[J]. J. Geomag. Geoele., 2007, 46(1):7-21
    [28] MUKAI T, MACHIDA S, SAITO Y, et al. The Low Energy Particle (LEP) experiment onboard the GEOTAIL satellite[J]. J. Geomag. Geoelectr., 1994, 46(8):669-692
    [29] FRANK L A, ACKERSON K L, PATERSON W R, et al. The Comprehensive Plasma Instrumentation (CPI) for the GEOTAIL spacecraft[J]. J. Geomag. Geoele., 1994, 46(1):23-37
    [30] SHUE J H, SONG P, RUSSELL C T, et al. Magnetopause location under extreme solar wind conditions[J]. J. Geophys. Res.:Space Phys., 1998, 103(A8):17691-17700
    [31] GENESTRETI K J, FUSELIER S A, GOLDSTEIN J, et al. The location and rate of occurrence of near-earth magnetotail reconnection as observed by Cluster and Geotail[J]. J. Atmos. Solar-Terr. Phys., 2014, 121:98-109
    [32] NAGAI T, SHINOHARA I, ZENITANI S. The dawn-dusk length of the X line in the near-Earth magnetotail:Geotail survey in 1994-2014[J]. J. Geophys. Res.:Space Phys., 2015, 120(10):8762-8773
    [33] RONG Z J, WAN W X, SHEN C, et al. Statistical survey on the magnetic structure in magnetotail current sheets[J]. J. Geophys. Res.:Space Phys., 2011, 116(A9):A09218
    [34] PAULARENA K I, RICHARDSON J D, KOLPAK M A, et al. A dawn-dusk density asymmetry in Earth's magnetosheath[J]. J. Geophys. Res.:Space Phys., 2001, 106(A11):25377-25394
  • 加载中
计量
  • 文章访问数:  1146
  • HTML全文浏览量:  134
  • PDF下载量:  1636
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-12
  • 修回日期:  2017-10-05
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回