留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Latest Scientific Results of China's Lunar Exploration Program

XU Lin ZOU Yongliao QIN Lang

XU Lin, ZOU Yongliao, QIN Lang. Latest Scientific Results of China's Lunar Exploration Program[J]. 空间科学学报, 2018, 38(5): 598-603. doi: 10.11728/cjss2018.05.598
引用本文: XU Lin, ZOU Yongliao, QIN Lang. Latest Scientific Results of China's Lunar Exploration Program[J]. 空间科学学报, 2018, 38(5): 598-603. doi: 10.11728/cjss2018.05.598
XU Lin, ZOU Yongliao, QIN Lang. Latest Scientific Results of China's Lunar Exploration Program[J]. Journal of Space Science, 2018, 38(5): 598-603. doi: 10.11728/cjss2018.05.598
Citation: XU Lin, ZOU Yongliao, QIN Lang. Latest Scientific Results of China's Lunar Exploration Program[J]. Journal of Space Science, 2018, 38(5): 598-603. doi: 10.11728/cjss2018.05.598

Latest Scientific Results of China's Lunar Exploration Program

doi: 10.11728/cjss2018.05.598
基金项目: 

Supported by National Science Foundation of China (41590851)

详细信息
    作者简介:

    XU Lin,xulin@nssc.ac.cn

Latest Scientific Results of China's Lunar Exploration Program

Funds: 

Supported by National Science Foundation of China (41590851)

More Information
    Author Bio:

    XU Lin,xulin@nssc.ac.cn

  • 摘要: Through the implementation of China's Lunar Exploration Program (CLEP), a large amount of data has been acquired. This paper will present the latest scientific results based on these data involving the composition, topography, space environment, subsurface structure of the Moon, and asteroid exploration and moon-based observations, etc.

     

  • [1] WANG X M, ZHANG X B, WU K. Thorium distribution on the lunar surface observed by Chang'E-2 gamma-ray spectrometer[J]. Astrophys. Space Sci., 2016, 361(7):234
    [2] WANG X M, ZHAO S Y. New insights into lithology distribution across the Moon[J]. J. Geophys. Res.:Planets, 2017, 122(10):2034-2052
    [3] ZHAO J N, XIAO L, QIAO L, et al. The Mons Rumker volcanic complex of the Moon:a candidate landing site for the Chang'E-5 mission[J]. J. Geophys. Res.:Planets, 2017, 122(7):1419-1442
    [4] SUN L Z, LING Z C, ZHANG J, et al. Lunar iron and optical maturity mapping:results from partial least squares modeling of Chang'E-1ⅡM data[J]. Icarus, 2016, 280:183-198
    [5] WANG Z C, WU Y Z, BLEWETT D T, et al. Submicroscopic metallic iron in lunar soils estimated from the in situ spectra of the Chang'E-3 mission[J]. Geophys. Res. Lett., 2017, 44(8):3485-3492
    [6] LIU D Y, CHEN M, QIAN K J, et al. Boundary detection of dispersal impact craters based on morphological characteristics using lunar digital elevation model[J]. IEEE J. Selec. Top. Appl. Earth Observ. Remote Sens., 2017, 10(12):5632-5646
    [7] WANG J, CHENG W M, LUO W, et al. An iterative black top hat transform algorithm for the volume estimation of lunar impact craters[J]. Remote Sens., 2017, 9(9):952
    [8] DI K C, XU B, PENG M, et al. Rock size-frequency distribution analysis at the Chang'E-3 landing site[J]. Planet. Space Sci., 2016, 120:103-112
    [9] DI K C, SUN S J, YUE Z Y, et al. Lunar regolith thickness determination from 3D morphology of small fresh craters[J]. Icarus, 2016, 267:12-23
    [10] LI J, ZENG Z F, LIU C, et al. A Study on lunar regolith quantitative random model and lunar penetrating radar parameter inversion[J]. IEEE Geosci. Remote Sens. Lett., 2017, 14(11):1953-1957
    [11] FENG J Q, SU Y, DING C Y, et al. Dielectric properties estimation of the lunar regolith at CE-3 landing site using lunar penetrating radar data[J]. Icarus, 2017, 284:424-430
    [12] DONG Z H, FANG G Y, JI Y C, et al. Parameters and structure of lunar regolith in Chang'E-3 landing area from Lunar Penetrating Radar (LPR) data[J]. Icarus, 2017, 282:40-46
    [13] LAI J L, XU Y, ZHANG X P, et al. Structural analysis of lunar subsurface with Chang'E-3 lunar penetrating radar[J]. Planet. Space Sci., 2016, 120:96-102
    [14] YUAN Y F, ZHU P M, ZHAO N, et al. The 3-D geological model around Chang'E-3 landing site based on lunar penetrating radar Channel 1 data[J]. Geophys. Res. Lett., 2017, 44(13):6553-6561
    [15] HU G P, ZHENG Y C, XU A A, et al. Qualitative verification of CE-2's Microwave measurement:relative calibration based on brightness temperature model and data fusion[J]. IEEE Trans. Geosci. Remote Sens., 2016, 54(3):1598-1609
    [16] HU G P, ZHENG Y C, XU A A, et al. Microwave brightness temperature of the Moon:the possibility of setting a calibration source of the lunar surface[J]. IEEE Geosci. Remote Sens. Lett., 2016, 13(2):182-186
    [17] HU G P, CHAN K L, ZHENG Y C, et al. Comparison and evaluation of the Chang'E microwave radiometer data based on theoretical computation of brightness temperatures at the Apollo 15 and 17 sites[J]. Icarus, 2017, 294:72-80
    [18] CAI Z C, LAN T. Lunar brightness temperature model based on the microwave radiometer data of Chang'E-2[J]. IEEE Trans. Geosci. Remote Sens., 2017, 55(10):5944-5955
    [19] WEI G F, LI X Y, WANG S J. Inversions of subsurface temperature and thermal diffusivity on the Moon based on high frequency of Chang'E-1 microwave radiometer data[J]. Icarus, 2016, 275:97-106
    [20] MENG Z G, ZHANG J D, CAI Z C, et al. Microwave thermal emission at tycho area and its geological significance[J]. IEEE J. Selected Top. Appl. Earth Observ. Remote Sens., 2017, 10(6):2984-2990
    [21] MENG Z G, YANG G D, PING J S, et al. Influence of (FeO+TiO2) abundance on the microwave thermal emissions of lunar regolith[J]. Sci. China:Earth Sci., 2016, 59(7):1498-1507
    [22] ZHENG C, PING J S, WANG M Y. Hierarchical classification for the topography analysis of Asteroid (4179) Toutatis from the Chang'E-2 images[J]. Icarus, 2016, 278:119-127
    [23] ZHAO W, XIAO T, LIU P, et al. Radar model fusion of asteroid (4179) Toutatis via its optical images observed by Chang'E-2 probe[J]. Planet. Space Sci., 2016, 125:87-95
    [24] HE F, ZHANG X X, CHEN B, et al. Determination of the Earth's plasmapause location from the CE-3 EUVC images[J]. J. Geophys. Res.:Space Phys., 2016, 121(1):296-304
    [25] YAN Y, WANG H N, HE H. Analysis of observational data from extreme Ultra-Violet camera onboard Chang'E-3 mission[J]. Astrophys. Space Sci., 2016, 361(2):76
    [26] HE H, SHEN C, WANG H N, et al. Response of plasmaspheric configuration to substorms revealed by Chang'E-3[J]. Sci. Rep., 2016, 6:32362
    [27] ZHU L Y, ZHOU X, HU J Y, et al. LUT reveals an algol-type eclipsing binary with three additional stellar companions in a multiple system[J]. Astron. J., 2016, 151(4):107
    [28] LIAO W P, QIAN S B, LI L J, et al. LUT observations of the mass-transferring binary AI Dra[J]. Astrophys. Space Sci., 2016, 361(6):184
    [29] LIAO W P, QIAN S B, ZEJDA M, et al. Lunar-based ultraviolet telescope study of the well-known Algol-type binary TW Dra[J]. Res. Astron. Astrophys., 2016, 16(6):9
    [30] ZHOU X, QIAN S B, ZHANG J, et al. The photometric investigation of v921 her using the Lunar-Based ultraviolet telescope of Chang'E-3 mission[J]. Adv. Astron., 2016:746897
  • 加载中
计量
  • 文章访问数:  730
  • HTML全文浏览量:  2
  • PDF下载量:  1826
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-11
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回