留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Solidification and Crystal Growth on the SJ-10 Recoverable Scientific Experiment Satellite

YIN Zhigang ZHANG Xingwang WU Jinling LI Xiaoya YU Jianding YUAN Zhangfu

YIN Zhigang, ZHANG Xingwang, WU Jinling, LI Xiaoya, YU Jianding, YUAN Zhangfu. Solidification and Crystal Growth on the SJ-10 Recoverable Scientific Experiment Satellite[J]. 空间科学学报, 2018, 38(5): 836-838. doi: 10.11728/cjss2018.05.836
引用本文: YIN Zhigang, ZHANG Xingwang, WU Jinling, LI Xiaoya, YU Jianding, YUAN Zhangfu. Solidification and Crystal Growth on the SJ-10 Recoverable Scientific Experiment Satellite[J]. 空间科学学报, 2018, 38(5): 836-838. doi: 10.11728/cjss2018.05.836
YIN Zhigang, ZHANG Xingwang, WU Jinling, LI Xiaoya, YU Jianding, YUAN Zhangfu. Solidification and Crystal Growth on the SJ-10 Recoverable Scientific Experiment Satellite[J]. Chinese Journal of Space Science, 2018, 38(5): 836-838. doi: 10.11728/cjss2018.05.836
Citation: YIN Zhigang, ZHANG Xingwang, WU Jinling, LI Xiaoya, YU Jianding, YUAN Zhangfu. Solidification and Crystal Growth on the SJ-10 Recoverable Scientific Experiment Satellite[J]. Chinese Journal of Space Science, 2018, 38(5): 836-838. doi: 10.11728/cjss2018.05.836

Solidification and Crystal Growth on the SJ-10 Recoverable Scientific Experiment Satellite

doi: 10.11728/cjss2018.05.836
详细信息
    作者简介:

    YIN Zhigang,panmx@aphy.iphy.ac.cn

Solidification and Crystal Growth on the SJ-10 Recoverable Scientific Experiment Satellite

More Information
    Author Bio:

    YIN Zhigang,panmx@aphy.iphy.ac.cn

  • 摘要: The low-gravity environment aboard the space provides a unique platform for understanding crystal-growth-related phenomena that are masked by gravity on the Earth and for exploring new crystal growth techniques. We have characterized the wetting behavior of metal alloys and carried out melt growth of compound semiconductors under the support of materials science program in the SJ-10 recoverable satellite. We found that interfacial reaction plays a significant role in the interfacial evolution of Sn-based alloys. Detached growth of InAsSb was realized under microgravity, whereas during the terrestrial experiment the crystal and the crucible wall contact with each other. Moreover, the suppression of buoyancy-driven convection results in a more uniform composition distribution in the InGaSb and Bi2Te3-based semiconductor alloys.

     

  • [1] BORISENKO E B, KOLESNIKOV N N, SENCHENKOV A S, et al. Crystal growth of Cd1-xZnxTe by the traveling heater method in microgravity on board of Foton-M4 spacecraft[J]. J. Cryst. Growth, 2017, 457:262
    [2] CROll A, KAISER T, SCHWEIZER M, et al. Floatingzone and floating-solution-zone growth of GaSb under microgravity[J]. J. Cryst. Growth, 1998, 191:365
    [3] OSTROGORSKY G, MARIN C, CHURILOV A, et al. Reproducible Te-doped InSb experiments in microgravity science Glovebox at the International Space Station[J]. J. Cryst. Growth, 2008, 310:364
    [4] CHEN N F, ZHONG X R, LIN L Y, et al. Comparison of field effect transistor characteristics between spacegrown and earth-grown gallium arsenide single crystal substrates[J]. Appl. Phys. Lett., 2001, 78:478
    [5] XU B S, CHEN J W, YUAN Z F, et al. Spreading dynamics and interfacial characteristics of Sn-3.0Ag-0.5CuxBi melting on Cu substrates[J]. Microg. Sci. Technol., 2016, 28:115
    [6] TU K N, SUH J, WU A T C, et al. Mechanism and prevention of spontaneous Tin whisker growth[J]. Mater. Trans., 2005, 46:2300
    [7] ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high-efficiency thermoelectric materials[J]. Adv. Mater., 2017, 29:1605884
    [8] ZHOU Y F, LI X Y, BAI S Q, et al. Comparison of space-and ground-grown Bi2Se0.21Te2.79 thermoelectric crystals[J]. J. Cryst. Growth, 2010, 312:775
    [9] KOENIG F. Zone melting of Bi0.5Sb1.5Te3 crystals under microgravity[J].Cryst. Res. Technol., 1998, 33:219
    [10] DU W N, YANG X G, PAN H Y, et al. Controlleddirection growth of planar InAsSb nanowires on Si substrates without foreign catalysts[J]. Nano Lett., 2016, 16:877
    [11] GAO F B, CHEN N F, ZHANG X W, et al. Structural, electrical, and optical properties of InAsxSb1-x epitaxial films grown by liquid-phase epitaxy[J]. J. Appl. Phys., 2008, 104:073712
    [12] PENG C T, CHEN N F, GAO F B, et al. Liquid-phaseepitaxy-grown InAsxSb1-x/GaAs for room-temperature 8~12μm infrared detectors[J]. Appl. Phys. Lett., 2006, 88:242108
    [13] SCHWEIZER M, COBB S D, VOLZ M P, et al. Defect density characterization of detached-grown germanium crystals[J]. J. Cryst. Growth, 2002, 235:161
    [14] KUMAR V N, ARIVANANDHAN M, RAJESH G, et al. Investigation of directionally solidified InGaSb ternary alloys from Ga and Sb faces of GaSb(111) under prolonged microgravity at the international space station[J]. NPJ Microg., 2016, 2:16026
    [15] MIRSANDI H, YAMAMOTO T, TAKAGI T, et al. A numerical study on the growth process of InGaSb crystals under microgravity with interfacial kinetics[J]. Microg. Sci. Technol., 2015, 27:313
    [16] YU J D, LIU Y, PAN X, et al. A review on InGaSb growth under microgravity and terrestrial conditions towards future crystal growth project using Chinese recovery satellite SJ-10[J]. Microg. Sci. Technol., 2016, 28:143
  • 加载中
计量
  • 文章访问数:  850
  • HTML全文浏览量:  97
  • PDF下载量:  367
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-22
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回