留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

观测路径和光谱分辨率对吸收性气溶胶指数的影响

张卓 王咏梅 王维和 王后茂

张卓, 王咏梅, 王维和, 王后茂. 观测路径和光谱分辨率对吸收性气溶胶指数的影响[J]. 空间科学学报, 2019, 39(1): 93-99. doi: 10.11728/cjss2019.01.093
引用本文: 张卓, 王咏梅, 王维和, 王后茂. 观测路径和光谱分辨率对吸收性气溶胶指数的影响[J]. 空间科学学报, 2019, 39(1): 93-99. doi: 10.11728/cjss2019.01.093
ZHANG Zhuo, WANG Yongmei, WANG Weihe, WANG Houmao. Sensitivity Study of Viewing Path and Spectral Resolution on Absorbing Aerosol Index[J]. Chinese Journal of Space Science, 2019, 39(1): 93-99. doi: 10.11728/cjss2019.01.093
Citation: ZHANG Zhuo, WANG Yongmei, WANG Weihe, WANG Houmao. Sensitivity Study of Viewing Path and Spectral Resolution on Absorbing Aerosol Index[J]. Chinese Journal of Space Science, 2019, 39(1): 93-99. doi: 10.11728/cjss2019.01.093

观测路径和光谱分辨率对吸收性气溶胶指数的影响

doi: 10.11728/cjss2019.01.093
基金项目: 

国家重点研发计划项目资助(2017YFB0502803, 2017YB0502800)

详细信息
    作者简介:

    张卓,hmwang@nssc.ac.cn

  • 中图分类号: P353

Sensitivity Study of Viewing Path and Spectral Resolution on Absorbing Aerosol Index

  • 摘要: 吸收性气溶胶指数(AAI)在监测污染物方面有较好的应用,其反演结果受边界层高度、云高、相对湿度以及仪器指标和观测几何路径等因素影响.利用大气辐射传输模型MODTRAN,对辐射传输方程中多次散射计算的不同近似方法和不同观测几何角度下的AAI进行模拟,研究这些因素对AAI结果的作用,并分析仪器光谱分辨率对AAI探测结果的影响.结果表明,折衷考虑计算效率与精度的情况下,应选择8流近似的离散坐标法进行带有多次散射计算的辐射方程解析.AAI在不同浓度和不同类型气溶胶下随观测角度变化的趋势相同:相对方位角<120°时,AAI误差在太阳天顶角和卫星方位角均为40°~60°时最大;相对方位角在120°~180°时误差均较小;光谱分辨率对AAI反演结果无明显影响.

     

  • [1] DAVE J V. Effect of aerosols on the estimation of total ozone in an atmospheric column from the measurements of its ultraviolet radiance[J]. Atmos. Sci., 1987, 35:899-911
    [2] HERMAN J R., KROTKOV N, CELARIER E, et al. Distribution of UV radiation at the Earth's surface from TOMS-measured UV-backscattered radiances[J]. Geophys. Res., 1999, 104(D10):12059-12076
    [3] KROTKOV N A, BHAETIA P K, HERMAN J R, et al. Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols:1. Cloud-free case[J]. Geophys. Res., 1998, 103(D8):8779-8793
    [4] HERMAN J R, BHARTIA P K, TORRES O, et al. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data[J]. Geophys. Res., 1997, 102(D14):16911-16922
    [5] TORRES O, BHARTIA P K, HERMAN J R, et al. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation:theoretical basis[J]. J. Geophys. Res. Atmos., 1998, 103(D14):17099-17110
    [6] TORRES O, HERMAN J R, BHARTIA P K, et al. Aerosol properties from EP-TOMS near UV observations[J]. Adv. Space Res., 2002, 29(11):1771-1780
    [7] CAKMUR R V, MILLER R L, TEGEN I. A comparison of seasonal and interannual variability of soil dust aerosols over the Atlantic Ocean as inferred by the TOMS AI and AVHRR AOT retrievals[J]. Geophys. Res. 2001, 106(D16):18287-18303
    [8] PROSPERO J M, GINOUX P, TORRES O, et al. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS), absorbing aerosol product[J] Rev. Geophys., 2002, 40(1):2-1-31
    [9] PROSPERO J M. Interhemispheric transport of viable fungi and bacteria from Africa to the caribbean with soil dust[M]//Werner D. Biological Resources and Migration, Chapter 11. Berlin, Heidelberg:SpringerVerlag, 2004:127-133
    [10] SHINN E A, Smith G W, PROSPERO J M, et al. African dust and the demise of Caribbean Coral Reefs[J]. Geophys. Res. Lett., 2000, 27(19):3029-3032
    [11] MCPETERS R D, KRUEGER A J, BHARTIA P K, et al. Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data products user's guide[M]. NASA Ref. Publ. 1993:1384
    [12] DE GRAAF M, STAMMES P, TORRES O, et al. Absorbing aerosol index:sensitivity analysis, application to gome and comparison with toms[J]. J. Geophys. Res. Atmos., 2005, 110(D1):372-384
    [13] WANG Y, WANG Y J, WANG W H, et al. Fy-3 satellite ultraviolet total ozone unit[J]. Chinese Sci. Bull., 2010, 55(1):84-89
    [14] KNEIZYS F X, ROBERTSON D C, ABREU L W, et al. The MODTRAN 2/3 Report and LOWTRAN 7 MODEL[M]. MODTRAN Report, Hanscom AFB, MA:Phillips Laboratory, Geophysics Directorate, PL/GPOS, 1996:1731-3010
    [15] SUN Y Y, DONG H, BI Z H, et al. Inter-comparison of models for radiative transfer in the atmosphere[J]. High Power, Laser and Particle Beams, 2004, 16(2):149-153
    [16] SHI G Y. Atmospheric Radiation[M] Beijing:Science Press, 2007:71-73
    [17] FAN B, LI X, ZHANG J, et al. The aerosol models in modtran:incorporating selected measurements from northern Australia[J]. Chin. J. Appl. Ecol. , 2005, 71 (711):1587-1594
  • 加载中
计量
  • 文章访问数:  824
  • HTML全文浏览量:  68
  • PDF下载量:  372
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-06
  • 修回日期:  2018-05-08
  • 刊出日期:  2019-01-15

目录

    /

    返回文章
    返回