留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄河站和Tromso站亚暴期间热层风场观测结果

吴鹏举 张燕革 艾勇

吴鹏举, 张燕革, 艾勇. 黄河站和Tromso站亚暴期间热层风场观测结果[J]. 空间科学学报, 2019, 39(2): 178-185. doi: 10.11728/cjss2019.02.178
引用本文: 吴鹏举, 张燕革, 艾勇. 黄河站和Tromso站亚暴期间热层风场观测结果[J]. 空间科学学报, 2019, 39(2): 178-185. doi: 10.11728/cjss2019.02.178
WU Pengju, ZHANG Yange, AI Yong. Thermospheric Wind over Chinese Yellow River Station and Tromso during Auroral Substorm[J]. Chinese Journal of Space Science, 2019, 39(2): 178-185. doi: 10.11728/cjss2019.02.178
Citation: WU Pengju, ZHANG Yange, AI Yong. Thermospheric Wind over Chinese Yellow River Station and Tromso during Auroral Substorm[J]. Chinese Journal of Space Science, 2019, 39(2): 178-185. doi: 10.11728/cjss2019.02.178

黄河站和Tromso站亚暴期间热层风场观测结果

doi: 10.11728/cjss2019.02.178
基金项目: 

国家海洋局极地考察办公室对外合作项目资助(201606)

详细信息
    作者简介:

    吴鹏举,E-mail:wpj@whu.edu.cn

  • 中图分类号: P353

Thermospheric Wind over Chinese Yellow River Station and Tromso during Auroral Substorm

  • 摘要: 中高层大气风场探测对研究大气物理过程具有极为重要的意义,尤其是在极地地区,风场对大气结构的影响更为剧烈.针对亚暴期间中国北极黄河站和日本Tromso站上空OI557.7nm气辉层(低热层)中性风场,利用全天空法布里-珀罗干涉仪(all-sky Fabry-Perot Interferometer,all-sky FPI)探测气辉谱线的多普勒频移,反演气辉层的大气风场信息.结果表明,低热层风场平均水平在100m·s-1左右,热层风场在极地地区更为剧烈,纬度相对较低的Tromso站探测到的风速整体小于同期黄河站上空的风速.结合离子风数据,分析离子拖拽和焦耳加热对中性风的影响过程,发现极光亚暴不仅对低热层风场有增强作用,也有明显的抑制效果,但整体风向都垂直于极光弧变化.

     

  • [1] VICKERS H, KOSCH M J, SUTTON E, et al. A solar cycle of upper thermosphere density observations from the EISCAT Svalbard Radar[J]. J. Geophys. Res.:Space Phys., 2014, 119(8):6833-6845
    [2] LIUZZO L R, RIDLEY A J, PERLONGO N J, et al. High-latitude ionospheric drivers and their effects on wind patterns in the thermosphere[J]. J. Geophys. Res.:Space Phys., 2015, 120(1):715-735
    [3] ZHANG H, YONG A, ZHANG Y G, et al. First observation of thermospheric neutral wind at Chinese Yellow River Station in Ny-Alesund, Svalbard[J]. Chin. Sci. Bull., 2013, 58(11):1310-1315
    [4] WANG Y J, WANG Y M, WANG H M. Simulation of ground-based Fabry-Perot interferometer for the measurement of upper atmospheric winds[J]. Chin. J. Geophys., 2014, 57(6):1732-1739
    [5] HUANG Y, MAKELA J J, SWENSON G R. Simulations of imaging Fabry-Perot interferometers for measuring upper-atmospheric temperatures and winds[J]. Appl. Opt., 2012, 51(17):3787-3800
    [6] HEELIS R A. Electrodynamics in the low and middle latitude ionosphere:a tutorial[J]. J. Atmos. Solar-Terr. Phys., 2004, 66(10):825-838
    [7] DAVID M, SOJKA J J, SCHUNK R W. How uncertainty in the neutral wind limits the accuracy of ionospheric modeling and forecasting[J]. J. Geophys. Res.:Space Phys., 2016, 121(1):519-528
    [8] XI G Y, ZHU F B, GAN Y, et al. Research on the regional short-term ionospheric delay modeling and forecasting methodology for mid-latitude area[J]. GPS Solutions, 2015, 19(3):457-465
    [9] ZHANG H. Study on the Thermosphere Wind Field with the All-sky Fabry-Perot Interferometer[D]. Wuhan:Wuhan University, 2013(张虹. 全天空Fabry-Perot干涉仪对热层大气风场的探测[D]. 武汉:武汉大学, 2013)
    [10] BRÄNDSTRÖM U. The Auroral Large Imaging System——Design, Operation and Scientific Results[D]. Kiruna:Swedish Institute of Space Physics, 2003
    [11] QIU Qi, YANG Huigen, LU Quanming, et al. Motion of dayside auroral arc observed at Yellow River Station affected by the Earth's rotation[J]. Chin. J. Space Sci., 2016, 36(6):909-915(丘琪, 杨惠根, 陆全明, 等. 地球自转对北极黄河站观测日侧极光弧运动的影响[J]. 空间科学学报, 2016, 36(6):909-915)
    [12] RICHMOND A D. Gravity wave generation, propagation, and dissipation in the thermosphere[J]. J. Geophys. Res.:Space Phys., 1978, 83(A9):4131-4145
    [13] LU G, RICHMOND A D, LÜHR H, et al. High-latitude energy input and its impact on the thermosphere[J]. J. Geophys. Res.:Space Phys., 2016, 121(7):7108-7124
    [14] LIU J. Observations on Thermospheric Vector Wind Field during Substorms by an All-sky FPI[D]. Wuhan:Wuhan University, 2014(刘珏. 全天空Fabry-Perot干涉仪对亚暴期间热层矢量风场的探测[D]. 武汉:武汉大学, 2014)
    [15] WILSON G R, WEIMER D R, WISE J O, et al. Response of the thermosphere to Joule heating and particle precipitation[J]. J. Geophys. Res.:Space Phys., 2006, bf111:A10314
    [16] TSUDA T T, NOZAWA S, OYAMA S, et al. Acceleration mechanism of high-speed neutral wind observed in the polar lower thermosphere[J]. J. Geophys. Res.:Space Phys., 2009, 114(A4):231-261
    [17] JOHNSON R M. Sondrestrom incoherent scatter radar observations during the lower thermosphere coupling study:September 21large$-$26, 1987[J]. J. Geophys. Res.:Space Phys., 1991, 96(A2):1081-1090
    [18] ZHANG Guohua, YUN Jianping, Ai Yong, et al. Response of polar thermosphere neutral wind to the night side ion drag during IMF disturbance[J]. Sci. Tech. Eng., 2015, 15(28):4-9(张国华, 郧建平, 艾勇, 等. 行星际磁场扰动下极区热层中性风对夜侧离子拖曳的响应[J]. 科学技术与工程, 2015, 15(28):4-9)
    [19] XIONG Bo, ZHANG Yange, Ai Yong, et al. Study of the lower thermospheric neutral wind at Chinese Arctic Yellow River Station during auroral substorms[J]. Chin. J. Space Sci., 2013, 33(6):629-636(熊波, 张燕革, 艾勇, 等. 北极黄河站极光亚暴期间低热层大气中性风研究[J]. 空间科学学报, 2013, 33(6):629-636)
  • 加载中
计量
  • 文章访问数:  781
  • HTML全文浏览量:  48
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-17
  • 修回日期:  2018-06-26
  • 刊出日期:  2019-03-15

目录

    /

    返回文章
    返回