留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

背景太阳风数值模拟的熵守恒格式

王腾龙 冯学尚 李彩霞 柳晓静

王腾龙, 冯学尚, 李彩霞, 柳晓静. 背景太阳风数值模拟的熵守恒格式[J]. 空间科学学报, 2019, 39(4): 417-431. doi: 10.11728/cjss2019.04.417
引用本文: 王腾龙, 冯学尚, 李彩霞, 柳晓静. 背景太阳风数值模拟的熵守恒格式[J]. 空间科学学报, 2019, 39(4): 417-431. doi: 10.11728/cjss2019.04.417
WANG Tenglong, FENG Xueshang, LI Caixia, LIU Xiaojing. Numerical Simulation for Solar Wind Background by Entropy Conservation Scheme[J]. Chinese Journal of Space Science, 2019, 39(4): 417-431. doi: 10.11728/cjss2019.04.417
Citation: WANG Tenglong, FENG Xueshang, LI Caixia, LIU Xiaojing. Numerical Simulation for Solar Wind Background by Entropy Conservation Scheme[J]. Chinese Journal of Space Science, 2019, 39(4): 417-431. doi: 10.11728/cjss2019.04.417

背景太阳风数值模拟的熵守恒格式

doi: 10.11728/cjss2019.04.417
基金项目: 

国家自然科学基金项目(41531073)和中国科学院"十三五"信息化建设专项项目(XXH13505-04)共同资助

详细信息
    作者简介:

    冯学尚,fengx@spaceweather.ac.cn

  • 中图分类号: P353

Numerical Simulation for Solar Wind Background by Entropy Conservation Scheme

  • 摘要: 背景太阳风研究是根据行星际扰动传播情况预测空间天气状况的基础,磁流体(MHD)模拟是背景太阳风研究的重要手段.采用一种新的数值计算方式,利用Ideal GLM-MHD将计算过程中产生的磁场散度以ch的速度向计算区域外传播,从而消去磁场散度;重构部分使用受约束的最小二乘法,将磁场散度作为约束条件添加到重构中,进一步对重构后的磁场梯度进行修正;通量计算采用满足热力学第二定律的熵守恒格式,该格式能够确保在计算过程中熵不增,保证数值稳定.研究结果表明,该方法应用于太阳风数值模拟的求解得到了更加稳定的结果.

     

  • [1] BRACKBILL J U, BARNES D C. The effect of nonzero a·±b B on the numerical solution of the magnetohydrodynamic equations[J]. J. Comput. Phys., 1980, 35(3):426-430
    [2] TOTH G. The a·±b B constraint in shock-capturing magnetohydrodynamics codes[J]. J. Comput. Phys., 2000, 161(2):605-652
    [3] BALSARA D S, KIM J. A comparison between divergence-cleaning and staggered-mesh formulations for numerical magnetohydrodynamics[J]. Astrophys. J., 2004, 602(2):1079
    [4] GUILLET T, TEYSSIER R. A simple multigrid scheme for solving the poisson equation with arbitrary domain boundaries[J]. J. Comput. Phys., 2011, 230(12):4756-4771
    [5] EVANS C R, HAWLEY J F. Simulation of magnetohydrodynamic flows-a constrained transport method[J]. Astrophys. J., 1988, 332:659-677
    [6] YEE K. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[J]. IEEE Trans. Anten. Propag., 1966, 14(3):302-307
    [7] BALSARA D S. Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction[J]. Astrophys. J. Supp. Ser., 2004, 151(1):149
    [8] DAI W, WOODWARD P R. A simple finite difference scheme for multidimensional magnetohydrodynamical equations[J]. J. Comput. Phys., 1998, 142(2):331-369
    [9] POWELL K G, ROE P L, LINDE T J, et al. A solution-adaptive upwind scheme for ideal magnetohydrodynamics[J]. J. Comput. Phys., 1999, 154(2):284-309
    [10] DEDNER A, KEMM F, KRONER D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. J. Comput. Phys., 2002, 175(2):645-673
    [11] FENG X, ZHANG M, ZHOU Y. A new three-dimensional solar wind model in spherical coordinates with a six-component grid[J]. Astrophys. J. Suppl. Ser., 2014, 214(1):6
    [12] FENG X, LI C, XIANG C, et al. Data-driven modeling of the solar corona by a new three-dimensional path-conservative osher-solomon MHD model[J]. Astrophys. J. Supp. Ser., 2017, 233(1):10
    [13] GODUNOV S K. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[J]. Matemat. Sbornik, 1959, 89(3):271-306
    [14] TORO E F. Riemann Solvers and Numerical Methods for Fluid Dynamics:A Practical Introduction[M]. Berlin, Herdelberg:Springer, 2009
    [15] CONSTANTINE D. Hyperbolic Conservation Laws in Continuum Physics[M]. Berlin, Herdelberg Springer, 2016
    [16] TADMOR E. Numerical viscosity and the entropy condition for conservative difference schemes[J]. Math. Comput., 1984, 43(168):369-381
    [17] ISMAIL F, ROE P L. Affordable, entropy-consistent Euler flux functions ii:entropy production at shocks[J]. J. Comput. Phys., 2009, 228(15):5410-5436
    [18] DERIGS D, WINTERS A R, GASSNER G J, et al. Ideal GLM-MHD:about the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations[J]. J. Comput. Phys., 2018, 364:420-467
    [19] CHANDRASHEKAR P, KLINGENBERG C. Entropy stable finite volume scheme for ideal compressible MHD on 2-d cartesian meshes[J]. SIAM J. Num. Anal., 2016, 54(2):1313-1340
    [20] WINTERS A R, DERIGS D, GASSNER G J, et al. A uniquely defined entropy stable matrix dissipation operator for high mach number ideal mhd and compressible euler simulations[J]. J. Comput. Phys., 2017, 332:274-289
    [21] TRICCO T S, PRICE D J. Constrained hyperbolic divergence cleaning for smoothed particle magnetohydrodynamics[J]. J. Comput. Phys., 2012, 231(21):7214-7236
    [22] FENG X, XIANG C, ZHONG D, et al. Sip-cese MHD model of solar wind with adaptive mesh refinement of hexahedral meshes[J]. Comput. Phys. Commun., 2014, 185(7):1965-1980
    [23] FENG X, YANG L, XIANG C, et al. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid[J]. Astrophys. J., 2010, 723(1):300
    [24] FREY A, HALL C, PORSCHING T. Some results on the global inversion of bilinear and quadratic isoparametric finite element transformations[J]. Math. Comput., 1978, 32(143):725-749
    [25] IVAN L, DE STERCK H, SUSANTO A, et al. High-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids[J]. J. Comput. Phys., 2015, 282:157-182
    [26] VENKATAKRISHNAN V. Convergence to steady state solutions of the euler equations on unstructured grids with limiters[J]. J. Comput. Phys., 1995, 118(1):120-130
    [27] HOPKINS P F. A constrained-gradient method to control divergence errors in numerical mhd[J]. Mon. Not. R. Astron. Soc., 2016, 462(1):576-587
    [28] TADMOR E. The numerical viscosity of entropy stable schemes for systems of conservation laws[J]. Math. Comput., 1987, 49(179):91-103
    [29] BARTH T J. Numerical methods for gas dynamic systems on unstructured meshes[M]//An Introduction to Recent Developments in Theory and Numerics for Conservation Laws. Berlin:Springer, 1999:195-285
    [30] PARKER E N. Dynamics of the interplanetary gas and magnetic fields[J]. Astrophys. J., 1958, 128:664
    [31] ALTSCHULER M D, NEWKIRK G. Magnetic fields and the structure of the solar corona[J]. Solar Phys., 1969, 9(1):131-149
    [32] SHIOTA D, KATAOKA R, MIYOSHI Y, et al. Inner heliosphere MHD modeling system applicable to space weather forecasting for the other planets[J]. Space Weather, 2014, 12(4):187-204
  • 加载中
计量
  • 文章访问数:  1162
  • HTML全文浏览量:  108
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-08
  • 修回日期:  2019-05-22
  • 刊出日期:  2019-07-15

目录

    /

    返回文章
    返回