留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力池沸腾中的气泡和传热行为数值模拟

易天浩 陈超越 雷作胜 赵建福

易天浩, 陈超越, 雷作胜, 赵建福. 微重力池沸腾中的气泡和传热行为数值模拟[J]. 空间科学学报, 2019, 39(4): 469-477. doi: 10.11728/cjss2019.04.469
引用本文: 易天浩, 陈超越, 雷作胜, 赵建福. 微重力池沸腾中的气泡和传热行为数值模拟[J]. 空间科学学报, 2019, 39(4): 469-477. doi: 10.11728/cjss2019.04.469
YI Tianhao, CHEN Chaoyue, LEI Zuosheng, ZHAO Jianfu. Numerical Simulation of Bubble Dynamics and Heat Transfer during Pool Boiling in Microgravity[J]. Chinese Journal of Space Science, 2019, 39(4): 469-477. doi: 10.11728/cjss2019.04.469
Citation: YI Tianhao, CHEN Chaoyue, LEI Zuosheng, ZHAO Jianfu. Numerical Simulation of Bubble Dynamics and Heat Transfer during Pool Boiling in Microgravity[J]. Chinese Journal of Space Science, 2019, 39(4): 469-477. doi: 10.11728/cjss2019.04.469

微重力池沸腾中的气泡和传热行为数值模拟

doi: 10.11728/cjss2019.04.469
基金项目: 

国家自然科学基金项目资助(51274137,U1860107,U1738105)

详细信息
  • 中图分类号: V524

Numerical Simulation of Bubble Dynamics and Heat Transfer during Pool Boiling in Microgravity

  • 摘要: 基于标准动量传输方程、连续性方程以及能量方程,建立了单个气泡的二维数值模型,考察了微重力过冷核态池内沸腾中的气泡动力学和传热行为.在动量传输方程中耦合了表面张力和Marangoni力,连续性方程和能量方程中耦合了相变效应,考虑了加热面上过热液体层的影响,并引入相场函数捕捉气液界面的动态变化.结果表明:气泡在生长过程中,形状由最初的半球形变为椭球形,最后变为脱附时的梨形;气泡在加热面上自由迁移,呈非轴对称结构,并且气泡上部的温度场呈现为蘑菇云状;气泡的脱附直径正比于g-0.488,脱附周期正比于g-1.113,加热面上的平均热通量正比于g0.229.

     

  • [1] OSE Y, KUNUGI T. Numerical study on subcooled pool boiling[C]//ASME/JSME 20118th Thermal Engineering Joint Conference. Honolulu, HaWaii:American Society of Mechanical Engineers, 2011:T10193-T10193-7
    [2] YEH L. Review of heat transfer technologies in electronic equipment[J]. J. Electron. Packag., 1995, 117(4):333-339
    [3] LI Zhendong, ZHAO Jianfu, LU Yanghui, et al. Origin of thermocapillary convection in pool boiling[J]. Chin. J. Space Sci., 2008, 28(1):38-43(李震东, 赵建福, 鲁仰辉, 等. 池沸腾现象中热毛细对流的成因[J]. 空间科学学报, 2008, 28(1):38-43)
    [4] ZHANG Y, WEI J, XUE Y, et al. Bubble dynamics in nucleate pool boiling on micro-pin-finned surfaces in microgravity[J]. Appl. Therm. Eng., 2014, 70(1):172-182
    [5] RAJ R, KIM J, MCQUILLEN J. Subcooled pool boiling in variable gravity environments[J]. J. Heat Trans., 2009, 131(9):091502-1-10
    [6] OHTA H, KAWAJI M, AZUMA H, et al. TR-1A rocket experiment on nucleate pool boiling heat transfer under microgravity[J]. Asme-Public. Htd., 1997, 354:249-256
    [7] LIU Peng, WU Ke, DU Wangfang, et al. Experimental study on bubble behaviors in microgravity pool boiling[J]. Chin. J. Space Sci., 2018, 38(2):221-226(刘鹏, 吴克, 杜王芳, 等. 微重力池沸腾中的气泡行为实验研究[J]. 空间科学学报, 2018, 38(2):221-226)
    [8] MERTE H. Some parameter boundaries governing microgravity pool boiling modes[J]. Ann. New York Acad. Sci., 2006, 1077(1):629-649
    [9] DHIR V K, WARRIER G R, AKTINOL E, et al. Nucleate pool boiling experiments (NPBX) on the international space station[J]. Microg. Sci. Tech., 2012, 24(5):307-325
    [10] SON G, DHIR V K, RAMANUJAPU N. Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface[J]. J. Heat Trans., 1999, 121(3):623-631
    [11] SINGH S, DHIR V K. Effect of gravity, wall superheat and liquid subcooling on bubble dynamics during nucleate boiling[C]//Microgravity Fluid Physics and Heat Transfer. New York:Begell House, 2000:106-113
    [12] YI T H, LEI Z S, ZHAO J F. Numerical investigation of bubble dynamics and heat transfer in subcooling pool boiling under low gravity[J]. Int. J. Heat Mass Trans., 2019, 132:1176-1186
    [13] JACQMIN D. Calculation of two-phase NavierStokes flows using phase-field modeling[J]. J. Comput. Phys., 1999, 155(1):96-127
    [14] GAO Shiqiao. Capillary Mechanics[M]. Beijing:Science Press, 2010(高世桥. 毛细力学[M]. 北京:科学出版社, 2010)
    [15] ZENG Pan. Basic Course of Finite Element[M]. Beijing:Higher Education Press, 2009(曾攀. 有限元基础教程[M]. 北京:高等教育出版社, 2009)
    [16] LIU Junjie, WANG Guoqing, ZHANG Lijun, et al. Preliminary study on numerical simulation of single bubble boiling[J]. Petrochem. Tech., 2015, 44(11):1295-1301(刘俊杰, 王国清, 张利军, 等. 单汽泡沸腾过程数值模拟的研究[J]. 石油化工, 2015, 44(11):1295-1301)
    [17] QIU D M, DHIR V K, CHAO D, et al. Single-bubble dynamics during pool boiling under low gravity conditions[J]. J. Thermophy. Heat Trans., 2002, 16(3):336-345
    [18] FENG Y, LI H X, GUO K K, et al. Numerical study of single bubble growth on and departure from a horizontal superheated wall by three-dimensional lattice boltzmann method[J]. Microg. Sci. Tech., 2018, 30(6):761-773
  • 加载中
计量
  • 文章访问数:  1120
  • HTML全文浏览量:  186
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-06
  • 刊出日期:  2019-07-15

目录

    /

    返回文章
    返回