留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳风动压脉冲结构的方向与种类统计研究

阮梦思 左平兵

阮梦思, 左平兵. 太阳风动压脉冲结构的方向与种类统计研究[J]. 空间科学学报, 2019, 39(5): 573-581. doi: 10.11728/cjss2019.05.573
引用本文: 阮梦思, 左平兵. 太阳风动压脉冲结构的方向与种类统计研究[J]. 空间科学学报, 2019, 39(5): 573-581. doi: 10.11728/cjss2019.05.573
RUAN Mengsi, ZUO Pingbing. Statistical Study on the Orientation and Type of Dynamic Pressure Pulses[J]. Chinese Journal of Space Science, 2019, 39(5): 573-581. doi: 10.11728/cjss2019.05.573
Citation: RUAN Mengsi, ZUO Pingbing. Statistical Study on the Orientation and Type of Dynamic Pressure Pulses[J]. Chinese Journal of Space Science, 2019, 39(5): 573-581. doi: 10.11728/cjss2019.05.573

太阳风动压脉冲结构的方向与种类统计研究

doi: 10.11728/cjss2019.05.573
基金项目: 

国家自然科学基金项目(41731067)和深圳市科创委基础研究项目(自由探索)(JCYJ20170307150645407,JCYJ20180306171748011)共同资助

详细信息
    作者简介:

    左平兵,pbzuo@hit.edu.cn

  • 中图分类号: P352

Statistical Study on the Orientation and Type of Dynamic Pressure Pulses

  • 摘要: 基于WIND飞船1995-2014年观测到的13042例非激波太阳风动压脉冲结构(Dynamic Pressure Pulse,DPP)事件列表,统计分析DPP事件法向分布特征,讨论其种类分布.研究发现:DPP事件上下游磁场矢量之间的夹角分布统计上呈双幂律谱分布;60.46%的非激波DPP事件法向矢量的倾斜角-方向角(θn-φn)主要集中分布在-50° ≤θn≤ 50°,160° ≤φn≤ 250°的区域内;θnn分布图的中心位置大概为(-22.83°,186.59°);根据DPP的上下游磁场变化特征,可将DPP分为切向间断(TD)、旋转间断(RD)、混合间断(ED)及其他间断(ND)结构,四者所占比例分别为46.42%,19.53%,27.47%,6.58%.统计结果表明DPP事件TD占优.此外,TD/RD数量的比值在太阳活动低年时明显偏大.研究结果可为下一步准确预报DPP到磁层的传播时间以及探究DPP的形成机理等提供观测依据.

     

  • [1] DALIN P A, ZASTENKER G N, PAULARENA K I, et al. A survey of large, rapid solar wind dynamic pressure changes observed by Interball-1 and IMP 8[J]. Ann. Geophys., 2002, 20(3):293-299
    [2] ZONG Q G, ZHOU X Z, WANG Y F, et al. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt[J]. J. Geophys. Res.:Space Phys., 2009, 114(A10):A10204. DOI: 10.1029/2009JA014393
    [3] SHEN X C, SHI Q Q, ZONG Q G, et al. Dayside magnetospheric ULF wave frequency modulated by a solar wind dynamic pressure negative impulse[J]. J. Geophys. Res.:Space Phys., 2017, 122(2):1658-1669
    [4] SHI Q Q, HARTINGER M D, ANGELOPOULOS V, et al. Solar wind pressure pulse-driven magnetospheric vortices and their global consequences[J]. J. Geophys. Res.:Space Phys., 2014, 119(6):4274-4280
    [5] SHI Q Q, HARTINGER M D, ANGELOPOULOS V, et al. THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events[J]. J. Geophys. Res.:Space Phys., 2013, 118(1):284-298
    [6] TIAN A M, SHEN X C, SHI Q Q, et al. Dayside magnetospheric and ionospheric responses to solar wind pressure increase:multispacecraft and ground observations[J]. J. Geophys. Res.:Space Phys., 2016, 121(11):10813-10830
    [7] CASH M D, HICKS S W, BIESECKER D A, et al. Validation of an operational product to determine l1 to earth propagation time delays[J]. Space Wea.-Int. J. Res.:Appl., 2016, 14(2):93-112
    [8] RIDLEY A J. Estimation of the uncertainty in timing the relationship between magnetospheric and solar wind processes[J]. J. Atmos. Solar-Terr. Phys., 2000, 62(9):757-771
    [9] HORBURY T S, BURGESS D, FRÄNZ M, et al. Prediction of Earth arrival times of interplanetary southward magnetic field turnings[J]. J. Geophys. Res.:Space Phys., 2001, 106(A12):30001-30009
    [10] HORBURY T S, BURGESS D, FRÄNZ M, et al. Three spacecraft observations of solar wind discontinuities[J]. Geophys. Res. Lett., 2001, 28(4):677-680
    [11] WEIMER D R, OBER D M, MAYNARD N C, et al. Variable time delays in the propagation of the interplanetary magnetic field[J]. J. Geophys. Res.:Space Phys., 2002, 107(A8):SMP-1-SMP 29-15
    [12] WEIMER D R, OBER D M, MAYNARD N C, et al. Predicting Interplanetary Magnetic Field (IMF) propagation delay times using the minimum variance technique[J]. J. Geophys. Res.:Space Phys., 2003, 108(A1). DOI: 10.1029/2002JA009405
    [13] WEIMER D R, KING J H. Improved calculations of interplanetary magnetic field phase front angles and propagation time delays[J]. J. Geophys. Res.:Space Phys., 2008, 113(A1):A01105. DOI: 10.1029/2007JA012452
    [14] WEIMER D R. Correction to "predicting Interplanetary Magnetic Field (IMF) propagation delay times using the minimum variance technique"[J]. J. Geophys. Res.:Space Phys., 2004, 109. DOI: 10.1029/2004JA010691
    [15] HAALAND S, PASCHMANN G, SONNERUP B U Ö. Comment on "a new interpretation of Weimer et al's solar wind propagation delay technique" by Bargatze et al[J]. J. Geophys. Res.:Space Phys., 2006, 111(A1):A06102. DOI:10. 1029/2005JA011376
    [16] ZUO P B, FENG X S, XIE Y Q, et al. A statistical survey of dynamic pressure pulses in the solar wind based on wind observations[J]. Astrophys. J., 2015, 808(1):83
    [17] BURLAGA L F, NESS N F. Tangential discontinuities in the solar wind[J]. Solar Phys., 1969, 9(2):467-477
    [18] HUDSON P D. Discontinuities in an anisotropic plasma and their identification in the solar wind[J]. Planet. Space Sci., 1970, 18(11):1611-1622
    [19] SMITH E J. Identification of interplanetary tangential and rotational discontinuities[J]. J. Geophys. Res., 1973, 78(13):2054-2063
    [20] NEUGEBAUER M, CLAY D R, GOLDSTEIN B E, et al. A reexamination of rotational and tangential discontinuities in the solar wind[J]. J. Geophys. Res.:Space Phys., 1984, 89(A7):5395-5408
    [21] ZUO P B, FENG X S, XIE Y Q, et al. Automatic detection algorithm of dynamic pressure pulses in the solar wind[J]. Astrophys. J., 2015, 803(2):94
    [22] Sonnerup B U Ö, SCHEIBLE M. Minimum and maximum variance analysis[R]//Analysis Methods for Multi-spacecraft Data. Noordwijk, Netherlands:Publications Division, 1998
    [23] BOROVSKY J E. Flux tube texture of the solar wind:Strands of the magnetic carpet at 1AU[J]. J. Geophys. Res.:Space Phys., 2008, 113(A8):A08110. DOI: 10.1029/2007JA012684
    [24] PASCHMANN G, SCHWARTZ S J. Analysis methods for multi-spacecraft data[J]. Eur. Space Agency, 1998, 1:185-220
    [25] KNETTER T, NEUBAUER F M, HORBURY T, et al. Discontinuity observations with Cluster[J]. Adv. Space Res., 2003, 32(4):543-548
    [26] KNETTER T, NEUBAUER F M, HORBURY T, et al. Four-point discontinuity observations using Cluster magnetic field data:a statistical survey[J]. J. Geophys. Res.:Space Phys., 2004, 109(A6):A06102. DOI: 10.1029/2003JA010099
    [27] LEPPING R P, BEHANNON K W. Magnetic field directional discontinuities:1. Minimum variance errors[J]. J. Geophys. Res.:Space Phys., 1980, 85(A9):4695-4703
    [28] JACKEL B J, CAMERON T, WEYGAND J M. Orientation of solar wind dynamic pressure phase fronts[J]. J. Geophys. Res.:Space Phys., 2013, 118(4):1379-1388
    [29] ERDÖS G, BALOGH A. Density of discontinuities in the heliosphere[J]. Adv. Space Res., 2008, 41(2):287-296
    [30] BRUNO R, CARBONE V, VELTRI P, et al. Identifying intermittency events in the solar wind[J]. Planet. Space Sci., 2001, 49(12):1201-1210
    [31] HO C M, TSURUTANI B T, GOLDSTEIN B E, et al. Tangential discontinuities at high heliographic latitudes (~-80°)[J]. Geophys. Res. Lett., 1995, 22(23):3409-3412
    [32] TSURUTANI B T, HO C M, ARBALLO J K, et al. Interplanetary discontinuities and Alfvén waves at high heliographic latitudes:Ulysses[J]. J. Geophys. Res., 1996, 101(A5):11027-11038
    [33] XIE Y Q, ZUO P B, FENG X S, et al. Properties of solar wind dynamic pressure pulses at 1AU during the deep minimum between solar cycles 23 and 24[J]. Solar Phys., 2015, 290(6):1835-1849
  • 加载中
计量
  • 文章访问数:  809
  • HTML全文浏览量:  78
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-20
  • 修回日期:  2019-06-12
  • 刊出日期:  2019-09-15

目录

    /

    返回文章
    返回