留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2009年冬季平流层爆发性增温期间行星波活动特征

魏晓芳 黄春明

魏晓芳, 黄春明. 2009年冬季平流层爆发性增温期间行星波活动特征[J]. 空间科学学报, 2020, 40(1): 42-51. doi: 10.11728/cjss2020.01.042
引用本文: 魏晓芳, 黄春明. 2009年冬季平流层爆发性增温期间行星波活动特征[J]. 空间科学学报, 2020, 40(1): 42-51. doi: 10.11728/cjss2020.01.042
WEI Xiaofang, HUANG Chunming. Characteristics of Planetary Wave Activity during the Stratospheric Sudden Warming in the Winter of 2009[J]. Chinese Journal of Space Science, 2020, 40(1): 42-51. doi: 10.11728/cjss2020.01.042
Citation: WEI Xiaofang, HUANG Chunming. Characteristics of Planetary Wave Activity during the Stratospheric Sudden Warming in the Winter of 2009[J]. Chinese Journal of Space Science, 2020, 40(1): 42-51. doi: 10.11728/cjss2020.01.042

2009年冬季平流层爆发性增温期间行星波活动特征

doi: 10.11728/cjss2020.01.042
基金项目: 

国家自然科学基金项目资助(41874178)

详细信息
    作者简介:

    黄春明,E-mail:huangcm@whu.edu.cn

  • 中图分类号: P353

Characteristics of Planetary Wave Activity during the Stratospheric Sudden Warming in the Winter of 2009

  • 摘要: 利用2008年12月至2009年4月的MERRA再分析数据资料,对2009年1月下旬北半球高纬平流层发生的强增温事件以及与之相关的行星波活动进行了研究.谱分析发现,SSW发生前后极区平流层内准16天行星波活动显著.利用二维谐波拟合法分别拟合温度场准16天波4个波模(W1,W2,E1,E2)的振幅和相位,结果表明:背景西风减弱时四个波模的振幅均有不同程度的增大,且都在50°-80°N范围内的平流层中上层达到最大值;准16天W2波的增幅最大且辐合最强烈,其引起的背景流最大西风减速超过4m·-1·d-1,说明准16天W2波在该次增温事件中占主导地位;行星波传播与零风线移动关系密切,准16天W2波在中高纬地区垂直向上传播并近似呈现经向驻波结构,然后分别向极点和赤道两个方向传播,这表明中高纬地区可能是行星波的一个源区.

     

  • [1] SINGH R P, PALLAMRAJU D. On the latitudinal distribution of mesospheric temperatures during sudden stratospheric warming events[J]. J. Geophys. Res.:Space Phys., 2015, 120(4):2926-2939
    [2] CHARLTON A J, POLVANI L M. A new look at stratospheric sudden warmings. Part I:climatology and modeling benchmarks[J]. J. Climate, 2007, 20(3):449-469
    [3] MANNEY G L, SCHWARTZ M J, KRGER K, et al. Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming[J]. Geophys. Res. Lett., 2009, 36(12):267-272
    [4] GARCIA R R. On the mean meridional circulation of the middle atmosphere[J]. J. Atmos. Sci., 1987, 44(24):3599-3609
    [5] KODERA K, FUNATSU B M, CLAUD C, et al. The role of convective overshooting clouds in tropical stratosphere-troposphere dynamical coupling[J]. Atmos. Chem. Phys., 2015, 15(12):6767-6774
    [6] MUKHTAROV P, PANCHEVA D, ANDONOV B, et al. Large-scale thermodynamics of the stratosphere and mesosphere during the major stratospheric warming in 2003/2004[J]. J. Geophys. Res.:Atmos., 2008, 113(D12):259-269
    [7] MATSUNO T. A dynamical model of the stratospheric sudden warming[J]. J. Atmos. Sci., 1971, 28(8):1479-1494
    [8] ANDREWS D, HOLTON J, LEOVY C. Middle atmosphere dynamics[J]. Rev. Geophys., 1983, 21(2):283-290
    [9] SALBY M L. Survey of planetary-scale traveling waves:the state of theory and observations[J]. Rev. Geophys., 1984, 22(2):209-236
    [10] BEARD A G, WILLIAMS P J S, MITCHELL N J, et al. A special climatology of planetary waves and tidal variability[J]. J. Atmos. Sol.:Terr. Phys., 2001, 63(9):801-811
    [11] BANCALÁ, KRÜGER, KIRSTIN, et al. The preconditioning of major sudden stratospheric warmings[J]. J. Geophys. Res. Atmos., 2012, 117(D4):101-113
    [12] LABITZKE K. The amplification of height wave 1 in January 1979:a characteristic precondition for the major warming in February[J]. Monthly Weather Rev., 1981, 109(5):983-989
    [13] VINEETH C, PANT T K, KUMAR K K, et al. Signatures of low latitude-high latitude coupling in the tropical MLT region during sudden stratospheric warming[J]. Geophys. Res. Lett., 2009, 36(20):146-158
    [14] SRIDHARAN S, RAGHUNATH K, SATHISHKUMAR S, et al. First results of warm mesospheric temperature over Gadanki (13.5°N, 79.2°E) during the sudden stratospheric warming of 2009[J]. J. Atmos. Sol.:Terr. Phys., 2010, 72(14/15):1139-1146
    [15] ZHU Lu, JIANG Guoying, XU Jiyao, et al. Quasi-16-day planetary waves during sudden stratospheric warming event[J]. Chin. J. Space. Sci., 2017, 37(4):432-441(朱露, 姜国英, 徐寄遥, 等. 平流层爆发性增温事件中大气准16日行星波[J]. 空间科学学报, 2017, 37(4):432-441)
    [16] PEDATELLA N M, FULLER-ROWELL T, WANG H, et al. The neutral dynamics during the 2009 sudden stratosphere warming simulated by different whole atmosphere models[J]. J. Geophys. Res.:Space Phys., 2014, 119(2):1306-1324
    [17] HARADA Y, GOTO A, HASEGAWA H, et al. A major stratospheric sudden warming event in January 2009[J]. J. Atmos. Sci., 2010, 67(6):2052-2069
    [18] IIDA C, HIROOKA T, EGUCHI N. Circulation changes in the stratosphere and mesosphere during the stratospheric sudden warming event in January 2009[J]. J. Geophys. Res.:Atmos., 2014, 119(12):7104-7115
    [19] LI Yafei, HU Jinggao, REN Rongcai. A case study of the Northern Hemisphere stratospheric sudden warming in the winter of 2009[J]. Plateau Meteor., 2017, 36(6):1576-1586(李亚飞, 胡景高, 任荣彩. 2009年冬季北半球平流层爆发性增温的个例分析[J]. 高原气象, 2017, 36(6):1576-1586)
    [20] JOHN S R, KUMARK K. Global normal mode planetary wave activity:a study using TIMED/SABER observations from the stratosphere to the mesosphere-lower thermosphere[J]. Climate Dyn., 2016, 47(12):3863-3881
    [21] WU D L, HAYS P B, SKINNER W R. A least squares method for spectral analysis of space-time series[J]. J. Atmos. Sci., 1995, 52(52):3501-3511
    [22] SCHEIBEN D, TSCHANZ B, HOCKE K, et al. The quasi 16-day wave in mesospheric water vapor during boreal winter 2011/2012[J]. Atmos. Chem. Phys., 2014, 14(13):6511-6522
    [23] ANDREWS D G, MCINTYRE M E. Generalized Eliassen-Palm and Charney-Drazin theorems for waves in Axismmetric mean flows in compressible atmospheres[J]. J. Atmos. Sci., 1978, 35(1):175-185
    [24] LAN Xiaoqing, CHEN Wen, WANG Lin. Quasi-stationary planetary wave-mean flow interactions in the Northern Hemisphere stratosphere and their responses to ENSO events[J]. Sci. China:Earth Sci., 2011, 42(1):10-23(兰晓青, 陈文, 王林. 北半球平流层准定常行星波与平均流的相互作用及其对ENSO事件的响应[J]. 中国科学:地球科学, 2012, 42(1):10-23)
    [25] MCDONALD A J, HIBBINS R E, JARVIS M J. Properties of the quasi 16 day wave derived from EOS MLS observations[J]. J. Geophys. Res.:Atmos., 2011, 116(D6):405-416
    [26] ALEXANDER S P, SHEPHERD M G. Planetary wave activity in the polar lower stratosphere[J]. Atmos. Chem. Phys., 2010, 10(2):707-718
    [27] XU Luyang, CHEN Quanliang. Planetary wave activity and its impact on different types of SSW events[J]. Plateau Meteor., 2016, 35(5):1389-1400(徐路扬, 陈权亮. 行星波活动对不同类型SSW的影响[J]. 高原气象, 2016, 35(5):1389-1400)
    [28] CHARNEY J G, DRAZIN P G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere[J]. J. Geophys. Res., 1961, 66(1):83-109
    [29] HUANG Zerong, LI Wentao, RUAN Xueqin. Planetary-scale disturbances and their vertical propagation in the lower ionosphere[J]. Chin. J. Space Sci., 1995, 15(2):148-155(黄泽荣, 李文涛, 阮雪琴. 低电离层中的行星波扰动及其垂直传播[J]. 空间科学学报, 1995, 15(2):148-155)
    [30] HUANG Ronghui, HUANGFU Jingliang, LIU Yong, et al. Development from the theory of energy dispersion of Rossby waves to studies on the dynamics of quasi stationary planetary waves[J]. Chin. J. Atmos. Sci., 2016, 40(1):3-21(黄荣辉, 皇甫静亮, 刘永, 等. 从Rossby波能量频散理论到准定常行星波动力学研究的发展[J]. 大气科学, 2016, 40(1):3-21)
  • 加载中
计量
  • 文章访问数:  952
  • HTML全文浏览量:  113
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-26
  • 修回日期:  2019-12-04
  • 刊出日期:  2020-01-15

目录

    /

    返回文章
    返回