留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷暴电场对LHAASO探测面宇宙线次级粒子能量的影响

闫瑞瑞 黄代绘 赵兵 阿西克古 周勋秀

闫瑞瑞, 黄代绘, 赵兵, 阿西克古, 周勋秀. 雷暴电场对LHAASO探测面宇宙线次级粒子能量的影响[J]. 空间科学学报, 2020, 40(1): 65-71. doi: 10.11728/cjss2020.01.065
引用本文: 闫瑞瑞, 黄代绘, 赵兵, 阿西克古, 周勋秀. 雷暴电场对LHAASO探测面宇宙线次级粒子能量的影响[J]. 空间科学学报, 2020, 40(1): 65-71. doi: 10.11728/cjss2020.01.065
YAN Ruirui, HUANG Daihui, ZHAO Bing, AXI Kegu, ZHOU Xunxiu. Effects of Thunderstorms Electric Field on Energy of Cosmic Rays at LHAASO[J]. Chinese Journal of Space Science, 2020, 40(1): 65-71. doi: 10.11728/cjss2020.01.065
Citation: YAN Ruirui, HUANG Daihui, ZHAO Bing, AXI Kegu, ZHOU Xunxiu. Effects of Thunderstorms Electric Field on Energy of Cosmic Rays at LHAASO[J]. Chinese Journal of Space Science, 2020, 40(1): 65-71. doi: 10.11728/cjss2020.01.065

雷暴电场对LHAASO探测面宇宙线次级粒子能量的影响

doi: 10.11728/cjss2020.01.065
基金项目: 

国家重点研发计划项目(2018YFA0404201)和国家自然科学基金项目(11475141,11847307)共同资助

详细信息
    作者简介:

    闫瑞瑞,E-mail:hdhamy@sina.com

  • 中图分类号: P353

Effects of Thunderstorms Electric Field on Energy of Cosmic Rays at LHAASO

  • 摘要: 采用Monte Carlo方法,通过模拟研究了不同强度雷暴电场对LHAASO探测面宇宙线次级电子能量的影响.在电场作用下,电子的能量分布发生了变化.在低能段总电子数目增加明显,而在高能段电场的影响不明显.当电场强度为1700V·cm-1(大于逃逸电场)时,能量<120MeV的电子被加速,能量<60MeV的总电子数目呈指数增长(增幅高达约2252%),雷暴电场对次级粒子的加速机制与相对论电子逃逸雪崩机制(RREA)相符.当电场强度为1000V·cm-1(小于逃逸电场)时,能量<70MeV的电子被加速,其数目明显增加,但是增幅(约86%)远小于逃逸电场时的幅度.对电场强度小于逃逸电场时的雷暴电场加速宇宙线次级粒子的物理机制进行了讨论.研究结果可为理解LHAASO实验数据特点以及研究雷暴期间宇宙线强度的变化等提供参考.

     

  • [1] MARSHALL T C, RUST W D, STOLZENBURG M. Electrical structure and updraft speeds in thunderstorms over the southern Great Plains[J]. J. Geophys. Res., 1995, 100(D1):1001-1015
    [2] STOLZENBURG M, MARSHALL T C, RUST W D, et al. Electric field values observed near lightning flash initiations[J]. Geophys. Res. Lett., 2007, 34(4).DOI: 10.1029/2006gl028777
    [3] MARSHALL T C, STOLZENBURG M, MAGGIO C R, et al. Observed electric fields associated with lightning initiation[J]. Geophys. Res. Lett., 2005, 32(3).DOI: 10.1029/2004gl021802
    [4] ZHOU Xunxiu, WANG Xinjian, HUANG Daihui, et al. Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing[J]. Acta Phys. Sin., 2015, 64(14):149202
    [5] BARTOLIL B, BERNARDINI P, BI X J, et al. Observation of the thunderstorm-related ground cosmic ray flux variations by ARGO-YBJ[J]. Phys. Rev.:D, 2018, 97(4).DOI: 10.1103/PhysRevD.97.042001
    [6] WILSON C T R. The electric field of the thundercloud and some of its effects[J]. Proc. Phys. Soc., 1924, 37(1):32-37
    [7] GUREVICH A V, MILIKH G M, ROUSSEL-DUPRE R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm[J]. Phys. Lett.:A, 1992, 165(5/6):463-468
    [8] FISHMAN G J, BHAT P N, MALLOZZI R, et al. Discovery of intense gamma-ray flashes of atmospheric origin[J]. Science, 1994, 264(5163):1313-1316
    [9] SMITH D M, LOPEZ L I, LIN R P, et al. Terrestrial gamma-ray flashes observed up to 20MeV[J]. Science, 2005, 307(5712):1085-1088
    [10] ALEXEENKO V V, CHERNYAEV A B, CHUDAKOV A E, et al. Short perturbations of cosmic ray intensity and electric field in atmosphere[C]//Proceeding of 19th International Cosmic Ray Conference. La Jolla:International Union of Pure and Applied Physics, 1985:352-355
    [11] AGLIETTA M, ALESSANDRO B, ANTONIOLI P, et al. The cosmic ray primary composition in the "knee" region through the EAS electromagnetic and muon measurements at EAS-TOP[J]. Astropart. Phys., 2004, 21(6):583-596
    [12] ZHOU Xunxiu, HU Hongbo, HUANG Qing. Search for TeV GRBs using Tibet ASγ data[J]. Acta Phys. Sin., 2009, 58(8):5879-5885
    [13] CHILINGARIAN A, AVAKYAN K, BABAYAN V, et al. Aragats space-environmental centre:status and SEP forecasting possibilities[J]. J. Phys. G:Nucl. Phys., 2003, 29(29):939-952
    [14] CHILINGARIAN A, ARAKELYAN K, AVAKYAN K. Correlated measurements of secondary cosmic ray fluxes by the Aragats Space-Environmental Center monitors[J]. Nucl. Instrum. Methods Phys. Res. A, 2005, 543(2):483-496
    [15] WADA Y, BOWERS G S, ENOTO T, et al. Termination of electron acceleration in thundercloud by intracloud/intercloud discharge[J]. Geophys. Res. Lett., 2018, 45(11):5700-5707
    [16] XU Bin, BIE Yeguang, ZOU Dan. Study of the Instantaneous change of secondary cosmic ray during thunderstorm[J]. Chin. J. Space Sci., 2012, 32(4):501-505(徐斌, 别业广, 邹丹. 雷暴期间次级宇宙线粒子强度瞬时变化研究[J]. 空间科学学报, 2012, 32(4):501-505)
    [17] CHILINGARIAN A, DARYAN A, ARAKELYAN K, et al. Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons[J]. Phys. Rev.:D, 2010, 82(4):2281-2288
    [18] CHILINGARIAN A, MAILYAN B, VANYAN L. Recovering of the energy spectra of electrons and gamma rays coming from the thundercloudsp[J]. Atmos. Res., 2012, 114-115(4):1-16
    [19] CHILINGARIAN A, VANYAN L, MAILYAN B. Observation of thunderstorm ground enhancements with intense fluxes of high-energy electrons[J]. Astropart. Phys., 2013, 48(7):1-7
    [20] VANYAN L, CHILINGARIAN A. Simulations of the Relativistic Runaway Electron Avalanches (RREA) in the thunder clouds above the Aragats space Environmental center (ASEC)[C]//Proceedings of the 32nd International Cosmic Ray Conference. Beijing:International Cosmic Ray Conference, 2011:338-341
    [21] CRAMER E S, DWYER J R, ARABSHAHI S, et al. An analytical approach for calculating energy spectra of relativistic runaway electron avalanches in air[J]. J. Geophys. Res.:Space Phys., 2014, 119(9):7794-7823
    [22] LINDY N C, BENTON E R, BEASLEY W H, et al. Energetic cosmic-ray secondary electron distribution at thunderstorm altitudes[J]. J. Atmos. Sol.:Terr. Phys., 2018, 179(10):435-440
    [23] CAPDEVIELLE J N, KNAPP J, REBEL H, et al. Extensive air shower simulations with the CORSIKA program[J]. Ame. Inst. Phys., 1993, 276(1):545-553
    [24] ZHOU Xunxiu, WANG Xinjian, HUANG Daihui, et al. Effects of thunderstorms electric field on intensity of cosmic ray electrons[J]. Chin. J. Space Sci., 2016, 36(1):49-55(周勋秀, 王新建, 黄代绘, 等. 雷暴电场对宇宙线次级粒子中电子的影响[J]. 空间科学学报, 2016, 36(1):49-55)
    [25] DWYER J R. A fundamental limit on electric fields in air[J]. Geophys. Res. Lett., 2003, 30(20):2055
    [26] SYMBALISTY E M D, ROUSSEL-DUPRÉ R A, YUKHIMUK V A. Finite volume solution of the relativistic Boltzmann equation for electron avalanche studies[J]. IEEE Trans. Plasma Sci., 1998, 26(5):1575-1582
    [27] ZHANG Yuesheng, XIANG Linchuan. Study on collision process between electron and photon in compton effect[J]. Phys. Eng., 2013, 23(3):18-20
    [28] ZHOU X X, WANG X J, HUANG D H, et al. Effect of near-earth thunderstorms electric field on the intensity of ground cosmic ray positrons/electrons in Tibet[J]. Astropart. Phys., 2016, 84(8):107-114
    [29] BETHE H A. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie[J]. Ann. Phys., 2010, 397(3):325-400
    [30] BUITINK S, HUEGE T, FALCKE H, et al. Monte Carlo simulations of air showers in atmospheric electric fields[J]. Astropart. Phys., 2010, 33(1):1-12
  • 加载中
计量
  • 文章访问数:  547
  • HTML全文浏览量:  49
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-10
  • 修回日期:  2019-09-10
  • 刊出日期:  2020-01-15

目录

    /

    返回文章
    返回