留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

材料粗糙度变化对卫星光谱红化效应的影响

许邦伟 唐轶峻

许邦伟, 唐轶峻. 材料粗糙度变化对卫星光谱红化效应的影响[J]. 空间科学学报, 2020, 40(1): 86-92. doi: 10.11728/cjss2020.01.086
引用本文: 许邦伟, 唐轶峻. 材料粗糙度变化对卫星光谱红化效应的影响[J]. 空间科学学报, 2020, 40(1): 86-92. doi: 10.11728/cjss2020.01.086
XU Bangwei, TANG Yijun. Influence of Exterior Materials Roughness Variation on Satellite Spectrum Reddening Effect[J]. Chinese Journal of Space Science, 2020, 40(1): 86-92. doi: 10.11728/cjss2020.01.086
Citation: XU Bangwei, TANG Yijun. Influence of Exterior Materials Roughness Variation on Satellite Spectrum Reddening Effect[J]. Chinese Journal of Space Science, 2020, 40(1): 86-92. doi: 10.11728/cjss2020.01.086

材料粗糙度变化对卫星光谱红化效应的影响

doi: 10.11728/cjss2020.01.086
基金项目: 

国家高技术研究发展计划项目资助(2015AA7032031F)

详细信息
    作者简介:

    许邦伟,E-mail:xubw@zjut.edu.cn

  • 中图分类号: O432

Influence of Exterior Materials Roughness Variation on Satellite Spectrum Reddening Effect

  • 摘要: 在轨人造目标的地基观测光谱存在红化效应,影响对目标反射光谱的理解应用.目标在进入空间环境后外露材料表面粗糙度发生变化.本文结合材料的光谱散射特性、卫星轨道和观测条件,仿真分析了卫星表面材料粗糙度变化对红化效应的影响.基于文献中实验数据,设计不同粗糙度的卫星表面材料样本,模拟空间环境中材料表面粗糙度的变化.利用双向反射分布函数,建立不同粗糙度材料样本的光谱散射模型.理论模拟结果表明,材料表面粗糙度的变化会影响其光谱散射特性,散射光谱形态和散射分布取决于粗糙度及入射-反射几何关系.引入网格剖分和可见面片,利用材料双向反射分布函数,仿真计算卫星表面材料在不同粗糙度状态下,整个卫星在可见光波段的反射光谱信号.仿真结果表明,随着卫星表面材料粗糙度的增加,其反射光谱在600nm之后随波长增加而呈现上升趋势,这表明空间环境中外露材料表面粗糙度变化是卫星产生红化效应的原因之一.

     

  • [1] ABERCROMBY K, HAMADA K, GUYOTE M, et al. Remote and ground truth spectral measurement comparisons[C]//Advanced Maui Optical and Space Surveillance Technologies Conference. Maui:Maui Economic Development Board, 2007:E42
    [2] CAUQUY M A A, ROGGEMANN M C, SCHULZ T J. Approaches for processing spectral measurements of reflected sunlight for space situational awareness[C]//Conference on Signal and Data Processing of Small Targets. Orlando:SPIE, 2004:48-57
    [3] VANANTI A, SCHILDKNECHT T, KRAG H. Reflectance spectroscopy characterization of space debris[J]. Adv. Space Res., 2017, 59(10):2488-2500
    [4] JORGENSEN K, AFRICANO J, STANSBERY G, et al. Determining the material type of man-made orbiting objects using low resolution reflectance spectroscopy[C]//International Symposium on Optical Science and Technology. San Diego:International Society for Optics and Photonics, 2001:237-244
    [5] XU Can, ZHANG Yasheng, ZHAO Yangsheng, et al. Advances in spectroscopic characters of space objects[J]. Spectrosc. Spect. Anal., 2017, 37(3):672-678(徐灿, 张雅声, 赵阳生, 等. 空间目标光谱特性研究进展[J]. 光谱学与光谱分析, 2017, 37(3):672-678)
    [6] HAPKE B. Space weathering from mercury to the asteroid belt[J]. J. Geophy. Res. Planet., 2001, 106(E5):10039-10073
    [7] JORGENSEN K, AFRICANO J, HAMADA K, et al. Physical properties of orbital debris from spectroscopic observations[J]. Adv. Space Res., 2004, 34(5):1021-1025
    [8] ABERCROMBY K, HAMADA K, OKADA J, et al. Comparisons of ground truth and remote spectral measurements of the FORMOSAT and ANDE spacecraft[J]. J. Occup. Environ. Med., 2006, 13(12):561-563
    [9] ENGELHART D P, COOPER R, COWARDIN H, et al. Space weathering experiments on spacecraft materials[C]//Advanced Maui Optical and Space Surveillance. Maui:Maui Economic Development Board, 2017
    [10] DONALD R, WILKES. The Mir environment and material effects as observed on the Optical Properties Monitor (OPM) Experiment[C]//The 37th Aerospace Sciences Meeting and Exhibit. Reno:AIAA, 2010
    [11] BUCZALA D M, MINTON T K. Erosion of Kapton H by Hyperthermal Atomic Oxygen:Dependence on O-Atom Fluence and Surface Tmperature[M]//Protection of Materials and Structures from the Space Environment. Dordrecht:Springer, 2006:317-329
    [12] GROSSMAN E, GOUZMAN I, LEMPERT G, et al. Kapton as a Standard for Atomic Oxygen Flux Measurement in LEO Ground Simulation Facilities:How Good Is It?[M]//Protection of Materials and Structures from Space Environment. Dordrecht:Springer, 2004:379-390
    [13] VANANTI A, SCHILDKNECHT T, KRAG H, et al. Preliminary results from reflectance spectroscopy observations of space debris in GEO[C]//Proceeding 5th European Conference on Space Debris. Darmstadt:Germany, 2009
    [14] BÉDARD D, LÉVESQUE M. Analysis of the CanX-1 engineering model spectral reflectance measurements[J]. J. Spacecraft Rockets, 2014, 51(5):1492-1504
    [15] LIU Yong, YE Zhuyu, YANG Jianqun, et al. Effects of Atomic Oxygen Exposure on Tribological Property of Zirconium Alloy[M]//Protection of Materials and Structures from the Space Environment. Netherlands:Springer, 2017:293-302
    [16] BANKS B A, EDWARDS D L, GOUZMAN I, et al. Materials issues in the space environment[J]. Mrs Bull., 2010, 35(1):12-19
    [17] DE G, KIM K. Materials International Space Station Experiment (MISSE):overview, accomplishments and future needs[C]//Annual International Space Station Research and Development Conference. Chicago:NASA, 2014
    [18] HOU Qingyu, ZHI Xiyang, ZhANG Huili, et al. Modeling and validation of spectral BRDF on material surface of space target[C]//International Symposium on Optoelectronic Technology and Application 2014:Optical Remote Sensing Technology and Applications. Beijing:International Society for Optics and Photonics, 2014, 9299:929914
    [19] CHU Wenyi, YANG Shiqin, HE Shiyu, et al. Effect of the atomic oxygen of space environment on properties of Kapton/Al film[J]. J. Aeronaut. Materials, 2006, 26(1):29-31(初文毅, 杨士勤, 何世禹, 等. 原子氧对Kapton/Al薄膜性能影响研究[J]. 航空材料学报, 2006, 26(1):29-31)
    [20] Wikipedia contributors. Gloss (optics)[OL].[2018.10.20] https://en.wikipedia.org/w/index.php?title=Gloss_(optics)&oldid=818189483
    [21] PEDROTTI F L, PEDROTTI L M, PEDROTTI L S, Introduction to Optics[M]. 3rd ed. MA:Addison Wesley, 2006:491-510
    [22] BAI Lu, WU Zhensen, CAO Yunhua, et al. Spectral scattering characteristics of space target in near-UV to visible bands[J]. Opt. Express, 2014, 22(7):8515-8524
    [23] ZHANG Wei, WANG Hongyuan, WANG Zhile, et al. Modeling method for visible scattering properties of s pace target[J]. Acta Photon. Sin., 2008, 37(12):2462-2467(张伟, 汪洪源, 王治乐, 等. 空间目标可见光散射特性建模方法研究[J]. 光子学报, 2008, 37(12):2462-2467)
  • 加载中
计量
  • 文章访问数:  537
  • HTML全文浏览量:  40
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-02
  • 修回日期:  2019-09-20
  • 刊出日期:  2020-01-15

目录

    /

    返回文章
    返回