留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LSTM神经网络在太阳F10.7射电流量中期预报中的应用

杨旭 朱亚光 杨升高 王西京 钟秋珍

杨旭, 朱亚光, 杨升高, 王西京, 钟秋珍. LSTM神经网络在太阳F10.7射电流量中期预报中的应用[J]. 空间科学学报, 2020, 40(2): 176-185. doi: 10.11728/cjss2020.02.176
引用本文: 杨旭, 朱亚光, 杨升高, 王西京, 钟秋珍. LSTM神经网络在太阳F10.7射电流量中期预报中的应用[J]. 空间科学学报, 2020, 40(2): 176-185. doi: 10.11728/cjss2020.02.176
YANG Xu, ZHU Yaguang, YANG Shenggao, WANG Xijing, ZHONG Qiuzhen. Application of LSTM Neural Network in F10.7 Solar Radio Flux Mid-term Forecast[J]. Journal of Space Science, 2020, 40(2): 176-185. doi: 10.11728/cjss2020.02.176
Citation: YANG Xu, ZHU Yaguang, YANG Shenggao, WANG Xijing, ZHONG Qiuzhen. Application of LSTM Neural Network in F10.7 Solar Radio Flux Mid-term Forecast[J]. Journal of Space Science, 2020, 40(2): 176-185. doi: 10.11728/cjss2020.02.176

LSTM神经网络在太阳F10.7射电流量中期预报中的应用

doi: 10.11728/cjss2020.02.176
基金项目: 

国家自然科学基金项目资助(41704152)

详细信息
    作者简介:

    杨旭,E-mail:yang_xu126@126.com

  • 中图分类号: P353

Application of LSTM Neural Network in F10.7 Solar Radio Flux Mid-term Forecast

  • 摘要: F10.7指数作为大气密度经验模型的重要输入参量,其预报精度直接影响航天器轨道预报精度.研究发现,太阳活动表现出长时间尺度上平均11年和中短时间尺度平均27天的周期性变化特征.依据这一观测事实,基于长短期记忆单元(Long Short-term Memory,LSTM)递归神经网络方法进行F10.7指数未来27天的中期预报.利用一个连续长时段F10.7数据作为训练数据,构建LSTM神经网络训练和预测模型,分别预测太阳活动高低年未来27天的F10.7指数.结果表明,太阳活动高年的第27天F10.7指数预报平均相对误差最优可达10%以内,低年最优可达2%以内.

     

  • [1] YIN F, MA S Y, LI J, et al. Simulation of orbit decay for LEO satellites caused by atmospheric drag[J]. Chin. J. Geophys., 2013, 56(12):3980-3987(尹凡, 马淑英, 李晶, 等. 大气阻力引起卫星轨道衰减的数值模拟[J]. 地球物理学报, 2013, 56(12):3980-3987)
    [2] LIU Siqing, ZHONG Qiuzhen, WEN Jing, et al. Modeling research of 10.7cm solar flux 27-day forecast (I)[J]. Chin. J. Space Sci., 2010, 30(1):1-8(刘四清, 钟秋珍, 温靖, 等. 太阳10.7cm射电流量中期预报模型研究(I)[J]. 空间科学学报, 2010, 30(1):1-8)
    [3] WANG Xin. Deep learning for mid-term forecast of daily index of solar 10.7cm radio flux[J]. J. Spacecraft TT&C Technol., 2017, 36(2):118-122(王歆. 基于深度学习的太阳10.7cm射电流量日值的中期预报[J]. 飞行器测控学报, 2017, 36(2):118-122)
    [4] MA Ruiping, JI Qiao, XU Jiyao. Wavelet analysis of quasi-27-day oscillations in the solar index F10.7[J]. Chin. J. Space Sci., 2007, 27(2):89-95(马瑞平, 纪巧, 徐寄遥. 太阳F10.7指数准27天振荡的小波分析[J]. 空间科学学报, 2007, 27(2):89-95)
    [5] ZHONG Qiuzhen, LIU Siqing, HE Juanxiong, et al. Application of singular spectrum analysis to solar 10.7cm radio flux 27-day forecast[J]. Chin. J. Space Sci., 2005, 25(3):199-204(钟秋珍, 刘四清, 何卷雄, 等. 奇异谱分析在太阳10.7cm射电流量中期预测中的应用[J]. 空间科学学报, 2005, 25(3):199-204)
    [6] WEN Jing, ZHONG Qiuzhen, LIU Siqing. Model research of 10.7cm solar radio flux 27-day forecast (I!I)[J]. Chin. J. Space Sci., 2010, 30(3):198-204(温靖, 钟秋珍, 刘四清. 太阳10.7cm射电流量中期预报模型研究(I!I)[J]. 空间科学学报, 2010, 30(3):198-204)
    [7] WANG Hongbo, XIONG Jianning, ZHAO Changyin. The Mid-term forecast method of solar radiation[J]. Acta Astron. Sin., 2014, 55(4):302-312(汪宏波, 熊建宁, 赵长印. 太阳辐射指数F10.7的中期预报方法[J]. 天文学报, 2014, 55(4):302-312)
    [8] MIAO Juan, LIU Siqing, XUE Bingsen, et al. Primary research on prediction method of 10.7cm solar radio flux[J]. Chin. J. Space Sci., 2003, 23(1):50-54(苗娟, 刘四清, 薛炳森, 等. 太阳10.7cm射电辐射流量预报方法初探[J]. 空间科学学报, 2003, 23(1):50-54)
    [9] XU Yiaoqiang, FANG Yueheng, ZHAO Donghua, et al. Electricity consumption prediction based on LSTM neural networks[J]. Power Syst. Technol., 2017, 20(8):25-29(徐尧强, 方乐恒, 赵冬华, 等. 基于LSTM神经网络的用电量预测[J]. 电网技术, 2017, 20(8):25-29)
    [10] REN Jun, WANG Jianhua, WANG Chuanmei, et al. Stock index forecast based on regularized LSTM model[J]. Comput. Appl. Software, 2018, 35(4):44-48, 108(任君, 王建华, 王传美, 等. 基于正则化LSTM模型的股票指数预测[J]. 计算机应用与软件, 2018, 35(4):44-48, 108)
    [11] ZHAO Zhenyu, XU Yongmao. Introduction to Fuzzy Theory, Neural Networks and Their Application[M]. Beijing:Tsinghua University Press, 1996(赵振宇, 徐用懋. 模糊理论和神经网络的基础与应用[M]. 北京:清华大学出版社, 1996)
    [12] HEATON J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville:deep learning[J]. Genet. Program. Evol. Mach., 2017, 19(1/2):1-3
    [13] NASSER J M, FAIRBAIRN D R. The application of neural network techniques to structural analysis by implementing an adaptive finite-element mesh generation[J]. Artif. Intell. Eng. Design Anal. Manuf., 1994, 8(3):177
    [14] ZHANG Qingliang, LI Xianming. A new method to determine hidden note number in neural network[J]. J. Jishou Univ.:Natl. Sci. Ed., 2002, 23(1):89-91(张清良, 李先明. 一种确定神经网络隐层节点数的新方法[J]. 吉首大学学报(自然科学版), 2002, 23(1):89-91)
    [15] GAO Daqi. On structures of supervised linear basis function feed forward three-layered neural networks[J]. J. Circuits Syst., 1997, 21(3):31-37(高大启. 有教师的线性基本函数前向三层神经网络结构研究[J]. 电路与系统学报, 1997, 21(3):31-37)
    [16] DING Yongsheng. Computational Intelligence:Theory, Technology and Application[M]. Beijing:Science Press, 2004(丁永生. 计算智能:理论, 技术与应用[M]. 北京:科学出版社, 2004)
  • 加载中
计量
  • 文章访问数:  467
  • HTML全文浏览量:  13
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-14
  • 修回日期:  2019-09-06
  • 刊出日期:  2020-03-15

目录

    /

    返回文章
    返回