留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嫦娥四号着陆区织女陨坑电场环境数值模拟

甘红 李雄耀 魏广飞

甘红, 李雄耀, 魏广飞. 嫦娥四号着陆区织女陨坑电场环境数值模拟[J]. 空间科学学报, 2020, 40(2): 250-263. doi: 10.11728/cjss2020.02.250
引用本文: 甘红, 李雄耀, 魏广飞. 嫦娥四号着陆区织女陨坑电场环境数值模拟[J]. 空间科学学报, 2020, 40(2): 250-263. doi: 10.11728/cjss2020.02.250
GAN Hong, LI Xiongyao, WEI Guangfei. Electric Fields Distribution of Zhinyu Crater in Chang’E-4 Landing Area[J]. Journal of Space Science, 2020, 40(2): 250-263. doi: 10.11728/cjss2020.02.250
Citation: GAN Hong, LI Xiongyao, WEI Guangfei. Electric Fields Distribution of Zhinyu Crater in Chang’E-4 Landing Area[J]. Journal of Space Science, 2020, 40(2): 250-263. doi: 10.11728/cjss2020.02.250

嫦娥四号着陆区织女陨坑电场环境数值模拟

doi: 10.11728/cjss2020.02.250
基金项目: 

国家自然科学基金项目(41572037,41803052,41903058),月球与行星科学国家重点实验室(澳门科技大学)开放课题项目(119/2017/A3),贵州省科技计划项目([2019]2830)和贵州理工学院高层次人才科研启动经费项目(XJGC20181290)共同资助

详细信息
    作者简介:

    甘红,E-mail:ganhong06@gmail.com

  • 中图分类号: P184

Electric Fields Distribution of Zhinyu Crater in Chang’E-4 Landing Area

  • 摘要: 由于太阳紫外、X射线和太阳风粒子作用,近月表形成尘埃等离子体环境,而月表陨坑地形使得这种尘埃等离子体环境更为复杂.本文以位于嫦娥四号着陆区的织女陨坑为研究对象,基于高程数据构造了该陨坑的三维模型.根据太阳-月球关系和陨坑地理坐标信息,计算了陨坑白天任意时刻的有效太阳辐照度分布,探讨了不同时刻陨坑内外的光照面积占比,得到陨坑随地方时而发生的遮蔽效应特征.同时,基于月表充电方程计算了织女陨坑在不同地方时条件下的平衡表面电势、德拜鞘高度和电场强度分布,发现陨坑自身遮蔽效应对坑内电场环境影响十分明显.以坑底中心为例,讨论了地方时和纬度对类织女陨坑的平衡表面电势、德拜鞘高度及电场强度的影响,结果表明三者变化特征均以正午时刻及赤道为界呈对称分布,越接近12:00LT或者越接近赤道,坑底中心的平衡表面电势和电场强度越高,德拜鞘高度越低.

     

  • [1] CRISWELL D R. Horizon-glow and the Motion of Lunar Dust, in Photon and Particle Interactions with Surfaces in Space[M]. Dordrecht:Springer, 1973:545-556
    [2] RENNILSON J J, CRISWELL D R. Surveyor observations of lunar horizon-glow[J]. Moon, 1974, 10(2):121-142
    [3] MCCOY J E, CRISWELL D R. Evidence for a high altitude distribution of lunar dust[R]//Lunar and Planetary Science Conference. Houston:Universities Space Research Association, 1974:2991-3005
    [4] ZOOK H A, MCCOY J E. Large scale lunar horizon glow and a high altitude lunar dust exosphere[J]. Geophys. Res. Lett., 1991, 18(11):2117-2120
    [5] SEVERNY A B, TEREZ E I, ZVEREVA A M. The measurements of sky brightness on lunokhod-2[J]. Moon, 1975, 14(1):123-128
    [6] ZOOK H A, POTTER A E, COOPER B L. The lunar dust exosphere and clementine lunar horizon glow[R]//Lunar and Planetary Science Conference. Houston:Universities Space Research Association, 1995:26
    [7] CALLE C I. Measuring electrostatic phenomena on Mars and the Moon[C]//Proceedings of the Institute of Electrostatics Japan. Florida:NASA, 2001:169-279
    [8] HEIKEN G H, VANIMAN D T, FRENCH B M. Lunar Sourcebook-A User's Guide to the Moon[M]. Cambridge:Cambridge University Press, 1991:27-60
    [9] COLWELL J E, GULBIS A A S, HORÁNYI M, et al. Dust transport in photoelectron layers and the formation of dust ponds on Eros[J]. Icarus, 2005, 175(1):159-169
    [10] KONG Linggao, WANG Shijin, WANG Xinyue, et al. Lunar surface plasma dusty environment and exploration[R]//Annual Symposium of Committee of Deep Space Exploration Technology Chinese Society of Astronautics. Hangzhou:Society of Astronautics, 2012:1021-1026(孔令高, 王世金, 王馨悦, 等. 月表尘埃等离子体环境及其探测[R]//中国宇航学会深空探测技术专业委员会学术年会. 杭州:中国宇航学会, 2012:1021-1026)
    [11] WAGNER S A. The Apollo Experience Lessons Learned for Constellation Lunar Dust Management[R]. Washington:NASA Technical Report, 2006
    [12] GAIER J R. The Effects of Lunar Dust on EVA Systems during the Apollo Missions[R]. Cleveland:NASA Technical Reprot, 2007
    [13] GAIER J R, JAWORSKE D A. Lunar dust on heat rejection system surfaces:problems and prospects[J]. AIP Conf. Proc., 2007, 880:27-34
    [14] BUHLER C R, CALLE C I, CLEMENTS J S, et al. Test method for in situ electrostatic characterization of lunar dust[C]//2007 IEEE Aerospace Conference. Montana:IEEE, 2007:1-19
    [15] NIE Jinqiao. Study on the Surface of the Moon:Lunar Sheath under Complex Topography[D]. Harbin:Harbin Institute of Technology, 2016(聂金桥. 月表复杂地貌形态下的月球表面鞘层研究[D]. 哈尔滨:哈尔滨工业大学, 2016)
    [16] HORÁNYI M, WALCH B, ROBERTSON S, et al. Electrostatic charging properties of Apollo 17 lunar dust[J]. J. Geophys. Res. Planets, 1998, 103(E4):8575-8580
    [17] COLWELL J E, HORÁNYI M, ROBERTSON S, et al. Behavior of charged dust in plasma and photoelectron sheaths[J]. Dust Planet. Syst., 2007, 643:171-175
    [18] SICKAFOOSE A A, COLWELL J E, HORÁNYI M, et al. Experimental levitation of dust grains in a plasma sheath[J]. J. Geophys. Res. Space Phys., 2002, 107 (A11):SMP-37
    [19] WANG X, HORÁNYI M, ROBERTSON S. Investigation of dust transport on the lunar surface in a laboratory plasma with an electron beam[J]. J. Geophys. Res. Space Phys., 2010, 115(A11):1-6
    [20] WANG X, HORÁNYI M, ROBERTSON S. Experiments on dust transport in plasma to investigate the origin of the lunar horizon glow[J]. J. Geophys. Res. Space Phys., 2009, 114(A5).DOI: 10.1029/2008JA013983
    [21] WANG X, HORÁNYI M, ROBERTSON S. Dust transport near electron beam impact and shadow boundaries[J]. Planet. Space Sci., 2011, 59(14):1791-1794
    [22] WANG X, PILEWSKIE J, HSU H W, et al. Plasma potential in the sheaths of electron-emitting surfaces in space[J]. Geophys. Res. Lett., 2016, 43(2):525-531
    [23] WANG J, HE X, CAO Y. Modeling electrostatic levitation of dust particles on lunar surface[J]. IEEE Trans. Plasma Sci., 2008, 36(5):2459-2466
    [24] BORISOV N, MALL U. Charging and motion of dust grains near the terminator of the Moon[J]. Planet. Space Sci., 2006, 54(6):572-580
    [25] FARRELL W M, STUBBS T J, VONDRAK R R, et al. Complex electric fields near the lunar terminator:the near-surface wake and accelerated dust[J]. Geophys. Res. Lett., 2007, 34(14).DOI: 10.1029/2007GL029312
    [26] STUBBS T J, FARRELL W M, HALEKAS J S, et al. Dependence of lunar surface charging on solar wind plasma conditions and solar irradiation[J]. Planet. Space Sci., 2014, 90:10-27
    [27] POPPE A R, PIQUETTE M, LIKHANSKII A, et al. The effect of surface topography on the lunar photoelectron sheath and electrostatic dust transport[J]. Icarus, 2012, 221(1):135-146
    [28] PIQUETTE M, HORÁNYI M. The effect of asymmetric surface topography on dust dynamics on airless bodies[J]. Icarus, 2017, 291:65-74
    [29] HUGHES A M, WILNER D J, CALVET N, et al. An inner hole in the disk around tw hydrae resolved in 7mm dust emission[J]. Astrophys. J., 2007, 664(1):536-542
    [30] LIKHANSKII A, POPPE A R, PIQUETTE M, et al. Plasma sheath at Moon craters:from sunrise to sunset[R]. Lunar and Planetary Science Conference. Woodlands:Universities Space Research Association, 2011:2285
    [31] POPPE A R, HORÁNYI M. Simulations of the photoelectron sheath and dust levitation on the lunar surface[J]. J. Geophys. Res. Space Phys., 2010, 115(A8). DOI: 10.1029/2010JA015286
    [32] POPPE A R, HALEKAS J S, HORÁNYI M. Negative potentials above the day-side lunar surface in the terrestrial plasma sheet:evidence of non-monotonic potentials[J]. Geophys. Res. Lett., 2011, 38(2):L02103
    [33] PIKE R J. Size-dependence in the shape of fresh impact craters on the Moon[C]//Impact and Explosion Cratering:Planetary and Terrestrial Implications. New York:Pergamon Press, 1977:489-509
    [34] STOPAR J D, HAWKE B R, ROBINSON M S, et al. Distribution, occurrence, and degradation of impact melt associated with small lunar craters[R]. Lunar and Planetary Science Conference. Woodlands:Universities Space Research Association, 2012:115-118
    [35] DAVIDSSON B J R, RICKMAN H, BANDFIELD J L, et al. Interpretation of thermal emission. I. The effect of roughness for spatially resolved atmosphereless bodies[J]. Icarus, 2015, 252:1-21
    [36] AHARONSON O, SCHORGHOFER N. Subsurface ice on Mars with rough topography[J]. J. Geophys. Res. Planets, 2006, 111(E11):23723
    [37] HALEKAS J S, DELORY G T, STUBBS T J, et al. The dynamic plasma and electric field environment near the lunar terminator and polar regions[R]. NLSI Lunar Science Conference. Moffett Field:Lunar Science Institute, 2008:1415
    [38] HALEKAS J S, DELORY G T, LIN R P, et al. Lunar surface charging during solar energetic particle events:measurement and prediction[J]. J. Geophys. Res. Space Phys., 2009, 114(A05110).DOI: 10.1029/2009JA014113
    [39] STUBBS T J, VONDRAK R R, FARRELL W M. A dynamic fountain model for lunar dust[J]. Adv. Space Res., 2006, 37(1):59-66
  • 加载中
计量
  • 文章访问数:  487
  • HTML全文浏览量:  4
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-18
  • 修回日期:  2020-01-14
  • 刊出日期:  2020-03-15

目录

    /

    返回文章
    返回