留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卫星发射对空间碎片环境影响分析

沈丹 刘静

沈丹, 刘静. 卫星发射对空间碎片环境影响分析[J]. 空间科学学报, 2020, 40(3): 349-356. doi: 10.11728/cjss2020.03.349
引用本文: 沈丹, 刘静. 卫星发射对空间碎片环境影响分析[J]. 空间科学学报, 2020, 40(3): 349-356. doi: 10.11728/cjss2020.03.349
SHEN Dan, LIU Jing. Analysis of the Effectiveness of Launch Traffic Model to the Space Debris Environment[J]. Chinese Journal of Space Science, 2020, 40(3): 349-356. doi: 10.11728/cjss2020.03.349
Citation: SHEN Dan, LIU Jing. Analysis of the Effectiveness of Launch Traffic Model to the Space Debris Environment[J]. Chinese Journal of Space Science, 2020, 40(3): 349-356. doi: 10.11728/cjss2020.03.349

卫星发射对空间碎片环境影响分析

doi: 10.11728/cjss2020.03.349
基金项目: 

国家自然科学基金项目资助(11503044)

详细信息
    作者简介:

    沈丹,E-mail:shendan@bao.ac.cn

  • 中图分类号: V412.4

Analysis of the Effectiveness of Launch Traffic Model to the Space Debris Environment

  • 摘要: 未来航天发射情况直接影响空间碎片环境,必须对其进行合理规划,以维护外空长期可持续发展.利用中国自主建立的空间碎片长期演化模型(SOLEM),结合蒙特卡洛方法,量化分析了空间物体发射数量、发射质量、发射面积等因子对未来空间碎片环境的影响,进一步研究了大型星座造成的未来空间物体碰撞次数和碎片数量的增加.仿真结果可为合理规划未来的航天发射规模提供理论依据.

     

  • [1] REDTKE J, MUELLER S, SCHAUS V, et al. LUCA2-An enhanced long-term utility for collision analysis[C]//Proceedings of the 7th European Conference on Space Debris. Darmstadt:European Space Agency, 2017
    [2] DOLADO-PEREZ J C, POMAIN D C, BRUNO R. Introducing MEDEE-a new orbital debris evolutionary model[C]//Proceedings of the 6th European Conference on Space Debris. Darmstadt:European Space Agency, 2013:22-25
    [3] LIOU J C, HALL D T, KRISKO P H, et al. LEGEND-A three-dimensional LEO-to-GEO debris evolutionary model[J]. Adv. Space Res., 2014, 34(5):981-986
    [4] WALKER R, MARTIN C E, STOKES P H, et al. Analysis of the effectiveness of space debris mitigation measures using the Delta model[J]. Adv. Space Res., 2001, 28(9):1437-1445
    [5] MARTIN C E, WALKER R, KLINKRAD H. The sensitivity of the ESA DELTA model[J]. Adv. Space Res., 2004, 34(5):969-974
    [6] HANADA T, ARIYOSHI Y, MIYAZAKI K, et al. Orbital debris modeling at Kyushu University[J]. Space Tech. Sci., 2009, 24(2):23-35
    [7] NARUMI T, HANADA T, KAWAMOTO S. Space debris environmental evolutionary model in low earth orbit[J]. Space Tech. Jpn., 2000, 48(7):11-17
    [8] LEWIS H G, SWINERD G G, NEWLAND R J. The space debris environment:future evolution[J]. Aeron. J., 2011, 115(1166):241-247
    [9] ROSSI A, CORDELLI A, PARDINI C, et al. Modelling the Space Debris Environment:Two New Computer Codes[R]. Pisa:Consorzio Pisa Ricerche, 1996
    [10] ROSSI A, ANSELMO L, PARDINI C, et al. Final Report, Upgrade of the Semi-Deterministic Model to Study the Long-Term Evolution of the Space Debris[R]. Pisa:Consorzio Pisa Ricerche, 2004
    [11] ROSSI A, ANSELMO L, PARDINI C, et al. Final Report, Semi-Deterministic Model[R]. Pisa:Consorzio Pisa Ricerche, 2009
    [12] ROSSI A, ANSELMO L, PARDINI C, et al. The new space debris mitigation (SDM 4.0) long term evolution code[C]//Proceedings of the 5th European Conference on Space Debris. Darmstad:European Space Agency, 2009
    [13] LIU J C, ANIKYMAR A K, VIRGILI B B, et al. Stability of the future LEO environment-an IADC comparison study[C]//Proceedings of the 6th European Conference on Space Debris. Darmstadt:European Space Agency, 2013
    [14] WANG Xiaowei, LIU jing. An introduction to a new space debris evolution model:SOLEM[J]. Adv. Astron., 2019. DOI: org/10.1155/2019/2738276
    [15] WANG X W, LIU J, CUI S X. A collision probability estimation algorithm used in the space debris evolution model[J]. J. Astronaut., 2019, 40(4):482-488(王晓伟, 刘静, 崔双星. 一种应用于空间碎片演化模型的碰撞概率算法[J]. 宇航学报, 2019, 40(4):482-488)
    [16] WANG Xiaowei, LIU Jing, WU Xiangbin, et al. Space objects long-term evolution model and the first analysis[C]//Proceedings of the 8th Space Debris Meeting in China. Beijing:China Academy of Launch Vehicle Technology, 2015:238-244(王晓伟, 刘静, 吴相彬, 等. 空间碎片长期演化模型与初步结果分析[C]//第八届全国空间碎片学术交流会. 北京:中国运载火箭技术研究院, 2015:238-244)
    [17] WANG Xiaowei, LIU Jing, CUI Shuangxing, et al. Analysis of effects of mitigation and active debris removal Using SOLEM[C]//Proceedings of the 9th Space Debris Meeting in China. Guiyang:China Academy of Launch Vehicle Technology, 2017(王晓伟, 刘静, 崔双星等. 基于SOLEM模型的碎片减缓和清除策略影响分析[C]//第九届全国空间碎片学术交流会. 贵阳:中国运载火箭技术研究院, 2017)
    [18] LIOU J C, ANILKUMAR A K, VIRGILI B B, et al. Stability of the future LEO environment-an IADC comparison study[C]//6th European Conference on Space Debris. Darmstadt:Inter-Agency Space Debris Coordination Committee, 2013
    [19] LEWIS H G. TIMOTHY H. Implications of prolonged solar minimum conditions for the space debris population[C]//Proceedings of the 6th European Conference on Space Debris. Darmstadt:European Space Agency, 2013
    [20] VIRGILI B B, LEMMENS S, FLOHRER T, et al. Influence of solar activity on long term propagations[C]//Proceedings of the 65th International Astronautical Congress. Toronto:International Astronautical Federation, 2014
    [21] DOLADO P J C, BRUNO R, ROMAIN D C. Sensitivity analysis of the long-term evolution of the space debris population in LEO[C]//Proceedings of the 65th International Astronautical Congress. Toronto International Astronautical Federation, 2014
    [22] DOLADO P J C, CARMEN P, ANSELMO L. Review of uncertainty sources affecting the long-term predictions of space debris evolutionary models[J]. Acta Astron., 2015, 113:51-65
    [23] LUIGI S G, LEWIS H G, CAMILLA C. Sensitivity analysis of launch activities in Low Earth Orbit[J]. Acta Astronaut., 2019, 158(2019):129-139
    [24] VIRGILI B B, DOLADO J C, LEWIS H G, et al. Risk to space sustain ability from large constellations of satellites[J]. Acta Astronaut., 2016, 126:154-162. DOI: https://www.sciencedirect.com/science/article/abs/pii/S0094576516300820
    [25] VIRGILI B B, KRAG H. Small satellites and the future space debris environment[C]//Proceedings of the 30th International Symposium on Space Technology and Science (ISTS), Kobe:JSASS, 2015
    [26] VIRGILI B B, KRAG H, LEWIS H, et al. Mega-constellations, small satellites and their impact on the space debris environment[C]//Proceedings of the 67th International Astronautical Congress (IAC). Guadalajara:International Astronautical Federation, 2016
    [27] RADTKE J, KEBSCHULL C, STOLL E. Interactions of the space debris environment with mega constellations-Using the example of the OneWeb constellation[J]. Acta Astron., 2016, 131(2016):55-68
    [28] RADTKE J, STOLL E, LEWIS H, et al. The impact of the increase in small satellite launch traffic on the long-term evolution of the space debris environment[C]//Proceedings of the 7th European Conference on Space Debris, Darmstadt:European Space Agency, 2017
    [29] KITAJIMAA S, ABEB S, HABADAC T, et al. Influences of MEGA constellations on the orbital environment[C]//Proceedings of the 67th International Astronautical Congress (IAC). Guadalajara:International Astronautical Federation, 2016
    [30] ZHANG Yulin, FAN Li, ZHANG Yan, et al. Theory and Design of Satellite Constellation[M]. Beijing:Science Press, 2008:39-52(张育林, 范丽, 张燕, 等. 卫星星座理论与设计[M]. 北京:科学出版社, 2008:39-52)
  • 加载中
计量
  • 文章访问数:  925
  • HTML全文浏览量:  137
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-16
  • 修回日期:  2019-11-22
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回