留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于流动沸腾气泡脱落行为的重力无关性分析

乐述文 杜王芳 李凯 赵建福

乐述文, 杜王芳, 李凯, 赵建福. 基于流动沸腾气泡脱落行为的重力无关性分析[J]. 空间科学学报, 2020, 40(3): 376-381. doi: 10.11728/cjss2020.03.376
引用本文: 乐述文, 杜王芳, 李凯, 赵建福. 基于流动沸腾气泡脱落行为的重力无关性分析[J]. 空间科学学报, 2020, 40(3): 376-381. doi: 10.11728/cjss2020.03.376
YUE Shuwen, DU Wangfang, LI Kai, ZHAO Jianfu. Gravity Independence Analysis Based on Bubble Departure in Flow Boiling[J]. Journal of Space Science, 2020, 40(3): 376-381. doi: 10.11728/cjss2020.03.376
Citation: YUE Shuwen, DU Wangfang, LI Kai, ZHAO Jianfu. Gravity Independence Analysis Based on Bubble Departure in Flow Boiling[J]. Journal of Space Science, 2020, 40(3): 376-381. doi: 10.11728/cjss2020.03.376

基于流动沸腾气泡脱落行为的重力无关性分析

doi: 10.11728/cjss2020.03.376
基金项目: 

国家自然科学基金项目资助(11802314,11972040)

详细信息
    作者简介:

    乐述文,E-mail:leshuwen@imech.ac.cn

    通讯作者:

    杜王芳,E-mail:duwangfang@imech.ac.cn

  • 中图分类号: V524;TK124

Gravity Independence Analysis Based on Bubble Departure in Flow Boiling

  • 摘要: 在流动沸腾现象中,气液两相密度差异导致重力对流动和传热性能产生很大影响,因此重力效应研究对于流动沸腾的航天应用具有重要意义.在对Bower-Klausner-Sathyanarayan重力无关准则(BKS准则)分析的基础上,提出其判据存在理论缺陷,不能正确反映重力效应.采用与BKS准则相同的气泡脱落模型,但忽略气泡沿加热管壁的滑动效应,重新计算常重力条件下不同流动方向起始沸腾阶段单气泡的脱落尺寸,归纳得到一个新的基于Fr(Froude数)的重力无关准则.该准则与实验结果符合更好,且与主导作用力准则基本相符.

     

  • [1] DU Wangfang, ZHAO Jianfu, LI Kai. Criteria for dominated force regime map in multiphase thermal fluid system[J]. J. Hebei Univ. Water Res. Elec. Eng., 2018, 1:1-5, 12
    [2] DU Wangfang, YUE Shuwen, ZHAO Jianfu, et al. Criterion of gravity independence in multiphase thermal fluid system[J]. J. Hebei Univ. Water Res. Elec. Eng., 2019, 2:1-7
    [3] BOWER J S, KLAUSNER J F, SATHYANARAYAN S. High heat flux, gravity independent, two-phase heat exchangers for spacecraft thermal management[J]. SAE J. Aerosp., 2002, 24(4):695-712
    [4] BOWER J S, KLAUSNER J F. Gravity independent subcooled flow boiling heat transfer regime[J]. Exp. Therm. Fluid Sci., 2006, 31(2):141-149
    [5] KLAUSNER J F, MEI R, BERNHARD D M, et al. Vapor bubble departure in forced convection boiling[J]. Int. J. Heat Mass Transfer, 1993, 36(3):651-662
    [6] ZENG L Z, KLAUSNER J F, BERNHARD D M, et al. A unified model for the prediction of bubble detachment diameters in boiling systems-I!I. Flow boiling[J]. Int. J. Heat Mass Transfer, 1993, 36(9):2261-2270
    [7] THORNCROFT G E, KLAUSNER J F, MEI R. Bubble forces and detachment models[J]. Multiphase Sci. Tech., 2001, 13(3-4):35-76
    [8] ROY C, VENUVANALINGAM P, KLAUSNER J F, et al. On the mechanism of bubble induced forced convective heat transfer enhancement[J]. Front. Heat Mass Transfer, 2018, 11(1):1-12
    [9] CHEN J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Ind. Eng. Chem. Proc. Des. Dev., 1966, 5(3):322-329
    [10] GUNGOR K E, WINTERTON R H S. A general correlation for flow boiling in tubes and annuli[J]. Int. J. Heat Mass Transfer, 1986, 29(3):351-358
    [11] KANDLIKAR S G. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes[J]. J. Heat Transfer, 1990, 112(1):219-228
    [12] THOME J R, DUPONT V, JACOBI A M. Heat transfer model for evaporation in microchannels, part I:presentation of the model[J]. Int. J. Heat Mass Transfer, 2004, 47(14-16):3375-3385
    [13] YUN B J, SPLAWSKI A, LO S, et al. Prediction of a subcooled boiling flow with advanced two-phase flow models[J]. Nucl. Eng. Des., 2012, 253:351-359
    [14] LEBON M, SEBILLEAU J, COLIN C. Dynamics of growth and detachment of an isolated bubble on an inclined surface[J]. Phys. Rev. Fluids, 2018, 3(7):073602
    [15] REICHARDT H, MUNZNER H. Rotationally symmetric source-sink bodies with predominantly constant pressure distributions[J]. Arm. Res. Est. Trans, 1950, 50(1):1-7
    [16] ZUBER N. The dynamics of vapor bubbles in nonuniform temperature fields[J]. Int. J. Heat Mass Transfer, 1961, 2(1-2):83-98
    [17] FRITZ W. The calculation of the maximum volume of steam bladders[J]. Phys. Zeitschr., 1935, 36:379-384
    [18] FRITZ W, ENDE W. The evaporation procedure after cinematographic absorption on steam bubbles[J]. Physik. Zeitschr., 1936, 37:391-401
    [19] ZHAO J F, XIE J C, LIN H, et al. Experimental study of two-phase flow in microgravity[A]//Proc. 51st International Astronautical Congress[C]//Rio de Janeiro, Brazil:IAF, 2000
    [20] BABA S, SAKAI T, SAWADA K, et al. Proposal of experimental setup on boiling two-phase flow on-orbit experiments onboard Japanese experiment module "KIBO"[J]. J. Phys. Conf. Ser., 2011, 327:012055
  • 加载中
计量
  • 文章访问数:  369
  • HTML全文浏览量:  9
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-15
  • 修回日期:  2020-04-22
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回