留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁云边界层中的重联慢激波观测分析

周梓露 左平兵 宋小健

周梓露, 左平兵, 宋小健. 磁云边界层中的重联慢激波观测分析[J]. 空间科学学报, 2020, 40(4): 471-478. doi: 10.11728/cjss2020.04.471
引用本文: 周梓露, 左平兵, 宋小健. 磁云边界层中的重联慢激波观测分析[J]. 空间科学学报, 2020, 40(4): 471-478. doi: 10.11728/cjss2020.04.471
ZHOU Zilu, ZUO Pingbing, SONG Xiaojian. Observation of a Slow Shock Associated with Reconnection Exhaust inside the Boundary Layer of Magnetic Cloud at 1 AU[J]. Chinese Journal of Space Science, 2020, 40(4): 471-478. doi: 10.11728/cjss2020.04.471
Citation: ZHOU Zilu, ZUO Pingbing, SONG Xiaojian. Observation of a Slow Shock Associated with Reconnection Exhaust inside the Boundary Layer of Magnetic Cloud at 1 AU[J]. Chinese Journal of Space Science, 2020, 40(4): 471-478. doi: 10.11728/cjss2020.04.471

磁云边界层中的重联慢激波观测分析

doi: 10.11728/cjss2020.04.471
基金项目: 

国家自然科学基金项目(41731067和41531073),国家重点实验室专项研究基金项目和中国科学院“十三五”信息化建设专项项目(XXH13505-04)共同资助

详细信息
    作者简介:

    周梓露,E-mail:zakhfly@outlook.com

  • 中图分类号: P353

Observation of a Slow Shock Associated with Reconnection Exhaust inside the Boundary Layer of Magnetic Cloud at 1 AU

  • 摘要: 在Petschek模型中,排空区边界处的一对慢激波是能量耗散的重要机制.已有大量行星际空间的Petschek型磁场重联排空区观测事件被报道,但是只有少量的排空区边界处观测到了慢激波.针对一例位于磁云边界层中的Petschek型磁场重联排空区观测事件,在排空区靠近磁云一侧边界处证认了一例慢激波.激波跃变层两侧的磁场和等离子体参数满足Rankine-Hugoniot关系,且激波上下游的中间马赫数均小于1,上游的慢马赫数为2.94(>1),下游的慢马赫数为0.65(<1),符合慢激波的观测特征.磁云内部的等离子体β值很低,局地阿尔芬速度高,同时磁云边界层中可能发生丰富的磁场重联活动,这可能是磁云前边界处慢激波形成的原因.

     

  • [1] PASCHMANN G, SONNERUP B U Ö, PAPAMASTORAKIS I, et al. Plasma acceleration at the Earth's magnetopause:evidence for reconnection[J]. Nature, 1979, 282(5736):243-246
    [2] OIEROSET M, PHAN T D, FUJIMOTO M, et al. In situ detection of collisionless reconnection in the Earth's magnetotail[J]. Nature, 2001, 412(6845):414-417
    [3] BURCH J L, TORBERT R B, PHAN T D, et al. Electron-scale measurements of magnetic reconnection in space[J]. Science, 2016, 352(6290).DOI: 10.1126/science.aaf2939
    [4] TORBERT R B, BURCH J L, PHAN T D, et al. Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space[J]. Science, 2018, 362(6421):1391-1395
    [5] PHAN T D, GOSLING J T, DAVIS M S, et al. A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind[J]. Nature, 2006, 439(7073):175-178
    [6] GOSLING J T. Magnetic reconnection in the solar wind[J]. Space Sci. Rev., 2011, 172(1/2/3/4):187-200
    [7] GOSLING J T, ERIKSSON S, MCCOMAS D J, et al. Multiple magnetic reconnection sites associated with a coronal mass ejection in the solar wind[J]. J. Geophys. Res.:Space Phys., 2007, 112(A8).DOI: 10.1029/2007JA012418
    [8] PHAN T D, GOSLING J T, PASCHMANN G, et al. The dependence of magnetic reconnection on plasma β and magnetic shear:evidence from solar wind observations[J]. Astrophys. J., 2010, 719(2):199-203
    [9] XU X, WEI F, FENG X. Observations of reconnection exhausts associated with large-scale current sheets within a complex ICME at 1AU[J]. J. Geophys. Res.:Space Phys., 2011, 116(A5).DOI: 10.1029/2010JA016159
    [10] WANG Y, WEI F S, FENG X S, et al. Energetic electrons associated with magnetic reconnection in the magnetic cloud boundary layer[J]. Phys. Rev. Lett., 2010, 105(19):195007
    [11] RUFFENACH A, LAVRAUD B, OWENS M J, et al. Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation[J]. J. Geophys. Res.:Space Phys., 2012, 117(A9).DOI: 10.1029/2012JA017624
    [12] RUFFENACH A, LAVRAUD B, FARRUGIA C J, et al. Statistical study of magnetic cloud erosion by magnetic reconnection[J]. J. Geophys. Res.:Space Phys., 2015, 120(1):43-60
    [13] GOSLING J T. Direct evidence for magnetic reconnection in the solar wind near 1AU[J]. J. Geophys. Res., 2005, 110(A1).DOI: 10.1029/2004ja010809
    [14] PETSCHEK H E. Magnetic Field Annihilation[M]. Washington:NASA Special Publication, 1964:425
    [15] FENG H, LI Q, WANG J, et al. Observation of two slow shocks associated with magnetic reconnection exhausts in the interplanetary space[J]. Solar Phys., 2017, 292(4):53
    [16] PHAN T D, GOSLING J T, DAVIS M S. Prevalence of extended reconnection X-lines in the solar wind at 1AU[J]. Geophys. Res. Lett., 2009, 36(9).DOI: 10.1029/2009GL037713
    [17] ZUO P B, WEI F S, FENG X S. Observations of an interplanetary slow shock associated with magnetic cloud boundary layer[J]. Geophys. Res. Lett., 2006, 33(15). DOI: 10.1029/2006gl026419
    [18] ZUO P B, FENG X S. The plasma and magnetic field characteristics of adouble discontinuity in interplanetary space[J]. Solar Phys., 2007, 240(2):347-357
    [19] ZHOU Z, WEI F, FENG X, et al. Observation of interplanetary slow shock pair associated with reconnection exhaust in magnetic cloud boundary layer[J]. Astrophys. J., 2018, 863(1).DOI: 10.3847/1538-4357/aad098
    [20] WEI F. Identification of the magnetic cloud boundary layers[J]. J. Geophys. Res., 2003, 108(A6).DOI: 10.1029/2002ja009511
    [21] WEI F, LIU R, FENG X, et al. Magnetic structures inside boundary layers of magnetic clouds[J]. Geophys. Res. Lett., 2003, 30(24).DOI: 10.1029/2003gl018116
    [22] WEI F, FENG X, YANG F, et al. A new non-pressure-balanced structure in interplanetary space:Boundary layers of magnetic clouds[J]. J. Geophys. Res., 2006, 111(A3). DOI: 10.1029/2005JA011272
    [23] LOPEZ R E. Solar cycle invariance in solar wind proton temperature relationships[J]. J. Geophys. Res., 1987, 92(A10):11189-11194
    [24] RICHARDSON I G, CANE H V. Regions of abnormally low proton temperature in the solar wind (1965-1991) and their association with ejecta[J]. J. Geophys. Res., 1995, 100(A12):23397-23412
    [25] LEPPING R P, ACÑNA M H, BURLAGA L F, et al. The WIND magnetic field investigation[J]. Space Sci. Rev., 1995, 71(1/2/3/4):207-229
    [26] LIN R P, ANDERSON K A, ASHFORD S, et al. A three-dimensional plasma and energetic particle investigation for the wind spacecraft[J]. Space Sci. Rev., 1995, 71(1/2/3/4):125-153
    [27] WHANG Y C. Slow shocks and their transition to fast shocks in the inner solar wind[J]. J. Geophys. Res., 1987, 92(A5):4349-4356
    [28] PASCHMANN G, SCHWARTZ S. Analysis methods for multi-spacecraft data[C]//Proceedings of the Cluster-Ⅱ Workshop Multiscale/Multipoint Plasma Measurements. Paris:European Space Agency (ESA), 2000
    [29] HUDSON P D. Discontinuities in an anisotropic plasma and their identification in the solar wind[J]. Planet. Space Sci., 1970, 18(11):1611-1622
    [30] PASCHMANN G, PAPAMASTORAKIS I, BAUMJOHANN W, et al. The magnetopause for large magnetic shear:AMPTE/IRM observations[J]. J. Geophys. Res., 1986, 91(A10):1099-1115
    [31] WHANG Y C, LARSON D, LIN R P, et al. Plasma and magnetic field structure of a slow shock:WIND observations in interplanetary space[J]. Geophys. Res. Lett., 1998, 25(14):2625-2628
  • 加载中
计量
  • 文章访问数:  772
  • HTML全文浏览量:  103
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-20
  • 修回日期:  2019-11-25
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回