留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近地磁尾方位角流期间的场向电流增强

朱光振 马玉端

朱光振, 马玉端. 近地磁尾方位角流期间的场向电流增强[J]. 空间科学学报, 2020, 40(4): 493-504. doi: 10.11728/cjss2020.04.493
引用本文: 朱光振, 马玉端. 近地磁尾方位角流期间的场向电流增强[J]. 空间科学学报, 2020, 40(4): 493-504. doi: 10.11728/cjss2020.04.493
ZHU Guangzheng, MA Yuduan. Enhancement of Field-aligned Current during the Azimuthal Flow in the Near-Earth Magnetotail[J]. Journal of Space Science, 2020, 40(4): 493-504. doi: 10.11728/cjss2020.04.493
Citation: ZHU Guangzheng, MA Yuduan. Enhancement of Field-aligned Current during the Azimuthal Flow in the Near-Earth Magnetotail[J]. Journal of Space Science, 2020, 40(4): 493-504. doi: 10.11728/cjss2020.04.493

近地磁尾方位角流期间的场向电流增强

doi: 10.11728/cjss2020.04.493
基金项目: 

国家自然科学基金项目资助(41431071,41821003)

详细信息
    作者简介:

    朱光振,E-mail:guangzhen_zhu@163.com

  • 中图分类号: P353

Enhancement of Field-aligned Current during the Azimuthal Flow in the Near-Earth Magnetotail

  • 摘要: 以往研究表明,地向高速流在近地磁尾可演化为方位角流,电离层内的方位角流和极光膨胀活动发生时,通过磁力线追踪到近地磁尾等离子体片的对应部分通常为地向和方位角高速流.通过对2016-2018年THEMIS卫星计划中THA,THD,THE三颗卫星同时观测到的数据进行分析、甄别后,在筛选出的62个事件中挑选一个典型的方位角流事件,与过去单颗卫星在不同时间段内的观测数据统计平均给出的结果进行对比分析发现,三颗卫星同时观测到的数据与过去单颗卫星在不同时间段内观测数据的统计平均结果存在较大差异.通过比较此事件期间等离子体流在xy平面的流场图发现,场向电流的大小与三颗卫星同时观测到的流场剪切度有较好的相关性.研究结果表明,方位角流期间近地磁尾和电离层通过场向电流耦合时,场向电流并不是在一个较宽的磁地方时内均匀分布,而是在一个局域化区域及较短的时间内产生强场向电流,这可能是由于方位角流在xy平面内的强剪切而造成的.

     

  • [1] BAUMJOHANN W, PASCHMANN W G G, CATTELL C A. Average plasma properties in the central plasma sheet[J]. J. Geophys. Res., 1989, 94:6597-6606
    [2] BAUMJOHANN W, PASCHMANN W G G, LUHR H. Characteristics of the high-speed flows in the plasma sheet[J]. J. Geophys. Res., 1990, 95:3801-3809
    [3] ANGELOPOULOS V, KENNEL C F, CORONITI F V, et al. Statistical characteristics of bursty bulk flow events[J]. J. Geophys. Res., 1994, 99:21257-21280
    [4] CAO J B, MA Y D, PARKS G, et al. Joint observations by Cluster satellites of bursty bulk flows in the magnetotail[J]. J. Geophys. Res., 2006, 111(A4):A04206. DOI: 10.1029/2005JA011322
    [5] MA Y D, CAO J B, NAKAMURA R, et al. Statistical analysis of earthward flow bursts in the inner plasma sheet during substorms[J]. J. Geophys. Res., 2009, 114(A7):A07215. DOI: 10.1029/2009JA014275
    [6] FU H S, KHOTYAINTSEV Y V, ANDRÉ M, et al. Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts[J]. Geophys. Res. Lett., 2011, 38(16):L16104. DOI: 10.1029/2011GL048528
    [7] MIYASHITA Y, MACHIDA S, NOS M, et al. A statistical study of energy release and transport midway between the magnetic reconnection and initial dipolarization regions in the near-earth magnetotail associated with substorm expansion onsets[J]. J. Geophys. Res., 2012, 117(A11):A11214. DOI: 10.1029/2012JA017925
    [8] CAO J B, MA Y D, PARKS G, et al. Kinetic analysis of the energy transport of bursty bulk flows in the plasma sheet[J]. J. Geophys. Res., 2013, 118(1):313-320. DOI: 10.1029/2012JA018351
    [9] AKASOFU S I. Physics of Magnetospheric Substorras[M]. Boston:D. Reidel Publishing Company, 1977:274
    [10] SHIOKAWA K, BAUMJOHANN W, HAERENDEL G. Braking of highspeed flows in the near-Earth tail[J]. Geophys. Res. Lett., 1997, 24(10):1179-1182. DOI: 10.1029/97GL01062
    [11] SHIOKAWA K, HAERENDEL G, BAUMJOHANN W. Azimuthal pressure gradient as driving force of substorm currents[J]. Geophys. Res. Lett., 1998, 25(7):959-962
    [12] YEOMAN T K, MUKAI T, YAMAMOTO T. Simultaneous ionospheric and magnetospheric observations of azimuthally propagating transient features during substorms[J]. Ann. Geophys., 1998, 16:754-763.DOI: 10.1007/s00585-998-0754-x
    [13] NAKAMURA R, HAERENDEL G, BAUMJOHANN W, et al. Substorm observations in the early morning sector with Equator-S and Geotail[J]. Ann. Geophys., 1999, 17:1602. DOI: 10.1007/s00585-999-1602-3
    [14] ANGELOPOULOS V, MCFADDEN J P, LARSON D, et al. Tail reconnection triggering substorm onset[J]. Science, 2008, 321:931-935. DOI: 10.1126/science.1160495
    [15] OGASAWARA K, KASABA Y, NISHIMURA Y, et al. Azimuthal auroral expansion associated with fast flows in the near-Earth plasma sheet:Coordinated observations of the THEMIS all-sky imagers and multiple spacecraft[J]. J. Geophys. Res., 2011, 116:A06209.DOI:10. 1029/2010JA016032
    [16] PITKÄNEN1 T, HAMRIN M, NORQVIST P, et al. Azimuthal velocity shear within an Earthward fast flow-further evidence for magnetotail untwisting[J]. Ann. Geophys., 2015, 33(3):245-255
    [17] LYONS L R, NISHIMURA Y, GALLARDO L B, et al. Azimuthal flow bursts in the inner plasma sheet and possible connection with SAPS and plasma sheet earthward flow bursts[J]. J. Geophys. Res., 2015, 120:5009-5021. DOI: 10.1002/2015JA021023
    [18] MA Y D, YANG J, PANG X X. The deflection of the eathward flow observed by TC-1 in the near magnetotail[J]. Chin. J. Geophys., 2016, 59(4):1189-1198.DOI:10.6038/cjg20160402(马玉端, 杨建, 庞学霞. TC-1在近磁尾观测到地向流的偏转[J]. 地球物理学报, 2016, 59(4):1189-1198)
    [19] ANGELOPOULOS V. The THEMIS mission[J]. Space Sci. Rev., 2008, 141:5-34. DOI: 10.1007/s11214-008-9336-1
    [20] MCFADDEN J P, CARLSON C, LARSON D W, et al. The THEMIS ESA plasma instrument and in-flight calibration[J]. Space Sci. Rev., 2008, 141(1-4):277-302
    [21] 365-9
    [22] GROCOTT A, MILAN S E, YEOMAN T K. Interplanetary magnetic field control of fast azimuthal flows in the nightside high-latitude ionosphere[J]. Geophys. Res. Lett., 2008, 35:L08102. DOI: 10.1029/2008GL033545
    [23] HUTCHINSON J A, WRIGHT D M, MILAN S E. Geomagnetic storms over the last solar cycle:a superposed epoch analysis[J]. J. Geophys. Res., 2011, 116:A09211. DOI: 10.1029/2011JA016463
    [24] XING X, LYONS L R, ANGELOPOULOS V, et al. Azimuthal plasma pressure gradient in quiet time plasma sheet[J]. Geophys. Res. Lett., 2009, 36:L14105.DOI:10. 1029/2009GL038881
  • 加载中
计量
  • 文章访问数:  341
  • HTML全文浏览量:  4
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-03
  • 修回日期:  2019-10-10
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回