留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火星表面高氯酸盐生物转化及原位制氧工艺技术

李艳菊 吴月 范春萍 念念

李艳菊, 吴月, 范春萍, 念念. 火星表面高氯酸盐生物转化及原位制氧工艺技术[J]. 空间科学学报, 2020, 40(4): 531-539. doi: 10.11728/cjss2020.04.531
引用本文: 李艳菊, 吴月, 范春萍, 念念. 火星表面高氯酸盐生物转化及原位制氧工艺技术[J]. 空间科学学报, 2020, 40(4): 531-539. doi: 10.11728/cjss2020.04.531
LI Yanju, WU Yue, FAN Chunping, NIAN Nian. Technology of Biotransformation and Oxygen Production from Perchlorate on the Surface of Mars[J]. Journal of Space Science, 2020, 40(4): 531-539. doi: 10.11728/cjss2020.04.531
Citation: LI Yanju, WU Yue, FAN Chunping, NIAN Nian. Technology of Biotransformation and Oxygen Production from Perchlorate on the Surface of Mars[J]. Journal of Space Science, 2020, 40(4): 531-539. doi: 10.11728/cjss2020.04.531

火星表面高氯酸盐生物转化及原位制氧工艺技术

doi: 10.11728/cjss2020.04.531
基金项目: 

国家重点研发计划项目资助(2017YFD0800504)

详细信息
    作者简介:

    李艳菊,E-mail:liyanju@bit.edu.cn

  • 中图分类号: P185

Technology of Biotransformation and Oxygen Production from Perchlorate on the Surface of Mars

  • 摘要: 火星表面极端缺氧条件及广泛分布的高氯酸盐所形成的强氧化环境,对人类登陆探测及后续宜居环境建设构成直接威胁.根据对火星表面高氯酸盐分布的探测成果,地球上高氯酸盐生物降解研究进展,以及人类登陆火星对资源和环境的需求,提出了利用生物方法转化火星表面高氯酸盐进行原位制氧的设想与工艺,对其工艺过程、影响因素、关键技术与难点、行星保护与副产物资源化、后续火星环境改造等进行了前瞻性分析,有望在火星上同时实现高氯酸盐无害化处理与氧气原位制备,化害为益,为火星探测提供新思路与新方法.

     

  • [1] Toner J D, Catling D C. Chlorate brines on Mars:implications for the occurrence of liquid water and deliquescence[J]. Earth Planet. Sci. Lett., 2018, 497:161-168
    [2] CIVIS S, KNIZEK A, FERUS M, et al. Formation of methane and (per) chlorates on Mars[J]. ACS Earth Space Chem., 2019, 3(2):221-232
    [3] HECHT M H, KOUNAVES S P, QUINN R C, et al. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander Site[J]. Science, 2009, 325:64-67
    [4] DAVILA A F, WILLSON D, COATES J D, et al. Perchlorate on Mars:a chemical hazard and a resource for humans[J]. Int. J. Astrobiol., 2013, 12(4):1-5
    [5] GLAVIN D P, FREISSINET C, MILLER K E, et al. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater[J]. JGR Planet., 2013, 118(10):1955-1973
    [6] NAVARRO-GONZALEZ R, STERN J, SUTTER B, et al. Possible detection of perchlorates by the Sample Analysis at Mars (SAM) Instrument:comparison with previous missions[C]//European Geosciences Union General Assembly. Vienna:European Geosciences Union, 2013
    [7] CLARK B C, KOUNAVES S P. Evidence for the distribution of perchlorates on Mars[J]. Int. J. Astrobiol., 2016, 15(04):311-318
    [8] WU Z C, WANG A L, LING Z C. Spectroscopic study of perchlorates and other oxygen chlorides in a martian environmental chamber[J]. Earth Planet. Sci. Lett., 2016, 452:123-132
    [9] WU Z C, WANG A L, FARRELL WILLIAM M. Forming perchlorates on Mars through plasma chemistry during dust events[J]. Earth Planet. Sci. Lett., 2018, 504:94-105
    [10] TONER J D, CATLING D C, LIGHT B. The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars[J]. Icarus, 2014, 233:36-47
    [11] SHI Jiankui, LIU Zhenxing, CHENG Zhengwei. An analysis of results of the Mars exploration[J]. Sci. Technol. Rev., 2011, 29(10):64-70(史建魁, 刘振兴, 程征伟. 火星探测研究结果分析[J]. 科技导报, 2011, 29(10):64-70)
    [12] HOGANCAMP J V, SUTTER B, MORRIS R V. Chlorate/Fe-Bearing phase mixtures as a possible source of oxygen and chlorine detected by the sample analysis at Mars instrument in Gale Crater, Mars[J]. JGR Planet., 2018, 123(11):2920-2938
    [13] STAMENKOVIĆ V, WARD L M, MISCHNA M, et al. O2 solubility in Martian near-surface environments and implications for aerobic life. Nature Geoscience[J]. Nat. Geosci., 2018, 11(12):905-909
    [14] STONE S W, YELLE R V, BENNA M, et al. Thermal structure of the Martian upper atmosphere from MAVEN NGIMS[J]. JGR Planet., 2018, 123(11):2842-2867
    [15] WEN Ziqiang, ZHENG Wenjing, SHEN Haoyu, et al. Research progress on the hazards, water pollution status and removal technique of perchlorate[J]. Environ. Chem., 2019, 38(01):209-216(闻自强, 郑雯静, 沈昊宇, 等. 高氯酸盐的危害、水污染现状与去除技术研究进展[J]. 环境化学, 2019, 38(01):209-216)
    [16] LI Qin, MENG Wei, ZHANG Jinliang. Current status of research on health hazards of perchlorate[J]. J. Toxicol., 2009, 23(03):250-252(李琴, 孟伟, 张金良. 高氯酸盐的健康危害研究现状[J]. 毒理学杂志, 2009, 23(03):250-252)
    [17] CAO J S, DANIEL Elliott, ZHANG W X. Perchlorate reduction by nanoscale iron particles[J]. J. Nanopart. Res., 2005, 7:499-506
    [18] ZHAO K, LI H T, TIAN S Q. A facile low-temperature synthesis of hierarchical porous Co3O4 micro/nano structures derived from ZIF-67 assisted by ammonium perchlorate[J]. Inorg. Chem. Front., 2019, 6(3):715-722
    [19] WU C W, SULLIVAN KYLE, CHOWDHURY, et al. Encapsulation of perchlorate salts within metal oxides for application as nanoenergetic oxidizers[J]. Adv. Funct. Mater., 2012, 22(1):78-85
    [20] QIU Hua, LI Jialu, LONG Yutao. Screening and degradation characteristics of perchlorate-degrading bacteria[J]. Technol. Water Treat., 2015, 41(4):58-61(邱华, 李佳璐, 龙雨涛. 高氯酸盐高效降解菌的筛选及降解特性[J]. 水处理技术, 2015, 41(4):58-61)
    [21] LIU N, QIN X M, AN Y L. Effects of multi-electron acceptor coexistence system on perchlorate biodegradation and microbial community variation[J]. Water Sci. Technol.:Water Supply, 2018, 18(3/4):1428-1436
    [22] MOTZER W E. Perchlorate:problem, detection, and solutions[J]. Environ. Forensics, 2001, 2(4):301-311
    [23] HE Feihong. Microbes build Mars base[J]. Super Sci., 2013, 07:18-19(贺飞鸿. 微生物打造火星基地[J]. 大科技:科学之谜, 2013, 07:18-19)
    [24] HAO Jian, LI Danming, DANG Wenqiang, et al. Progress in in-situ resource utilization of atmospheric on Mars[J]. Vacuum Cryogenics, 2018, 24(5):289-296(郝剑, 李丹明, 党文强, 等. 火星二氧化碳及水资源利用的研究进展[J]. 真空与低温, 2018, 24(5):289-296)
    [25] BALK M, GELDER T, WEELINK S A. Perchlorate reduction by the thermophilic bacterium moorella perchloratireducens sp. nov. isolated from underground gas storage[J]. Appl. Environ. Microbiol., 2008, 74(2):403-409
    [26] SHI Qiong, LIANG Shuang, WANG Shuguang. Perchlorate removal in water by bacteria associated with Fe0[J]. J. Shandong Univ.:Eng. Sci., 2012, 42(6):107-114(时琼, 梁爽, 王曙光. 零价铁联合微生物去除水中高氯酸盐的研究[J]. 山东大学学报, 2012, 42(6):107-114)
    [27] LEVAKOV, ILIL, RONEN, et al. Combined in-situ bioremediation treatment for perchlorate pollution in the vadose zone and groundwater[J]. J. Hazard. Mater., 2019, 369:439-447
    [28] PENG Yinxian, WU Chundu, NING Degang, et al. Development of perchlorate removal method[J]. Environ. Sci. Tech., 2009, 32(02):87-90(彭银仙, 吴春笃, 宁德刚, 等. 高氯酸盐去除方法研究进展[J]. 环境科学与技术, 2009, 32(02):87-90)
    [29] CAO F F, JAUNAT, JESSY, et al. Worldwide occurrence and origin of perchlorateion in waters:a review[J]. Sci. Total Environ., 2019, 661:737-749
    [30] XIE Yuxuan, GUAN Xiangyu, YU Lisha. The study of the structure of perchlorate(ClO4-)-degrading bacterial communities under autotrophic conditions[J]. Biotech. Bull., 2014, 04:169-175(谢宇轩, 关翔宇, 于丽莎. 自养条件下高氯酸盐降解细菌群落研究[J]. 生物技术通报, 2014, 04:169-175)
    [31] LI Haixiang, ZHANG Huan, YAO Yi. Overview of advances in research of microbial reductive degradation for perchlorate removal in water[J]. Water Purif. Tech., 2016, 35(1):16-20(李海翔, 张欢, 姚毅. 微生物还原降解水中高氯酸盐的研究进展[J]. 净水技术, 2016, 35(1):16-20)
    [32] AN Y X, Kim Youngwha, ZUO S X. Analysis of archaeal community in autotrophic perchlorate- degrading enrichment culture[J]. J. Life Sci., 2017, 27(4):435-441
    [33] WAN D J, NIU Z H, ZHOU J. Influence of electron donors on perchlorate reduction and microbial community structure[J]. Environ. Eng. Sci., 2018, 35(11):1255-1262
    [34] WANG Rui, LIU Fei, QIN Li. Anaerobic biological reduction of perchlorate in the presence of nitrat[J]. Earth Sci.:J. China Univ. Geosci., 2012, 37(2):307-3b11(王蕊, 刘菲, 秦莉.高氯酸盐在硝酸盐还原条件下的厌氧生物降解[J]. 地球科学:中国地质大学学报, 2012, 37(2):307-311)
    [35] SONG Y G, LOGAN B E.Effect of O2 exposure on perchlorate reduction by Dechlorosoma sp. KJ[J]. Water Res., 2004, 38(6):1626-1632
    [36] FENG Gao, WANG Qian, ZHANG Yuanyuan, et al. Research progress of microbial method in removing perchlorate[J]. Hebei J. Ind. Sci. Technol., 2014, 31(6):519-524(冯杲, 王倩, 张媛媛, 等. 微生物法去除高氯酸盐的研究进展[J]. 河北工业科技, 2014, 31(6):519-524)
    [37] KUCHARZYK, KATARZYNA H, CRAWFORD, et al. A method for assaying perchlorate concentration in microbial cultures using the fluorescent dye resazurin[J]. J. Microbiol. Meth., 2010, 81(1):26-32
    [38] WU Min, WANG Shuaifeng, GAO Naiyun, et al. Kinetics of biological high-concentration perchlorate reduction and optimization of reaction conditions[J]. J. Cent. South Univ.:Sci. Technol., 2016, 47(11):3958-3964(吴敏, 王帅锋, 高乃云, 等. 生物法还原高浓度高氯酸盐动力学及反应条件的优化[J]. 中南大学学报:自然科学版, 2016, 47(11):3958-3964)
    [39] XU X, GAO B Y, JIN B, et al. Study of microbial perchlorate reduction:considering of multiple pH, electron acceptors and donors[J]. J. Hazard. Mater., 2015, 285:228-235
    [40] QIAN Huijing, XI Shenglan, HE Ping. Biological reduction of perchlorate and optimization[J]. Environ. Sci., 2009, 30(5):1402-1407(钱慧静, 奚胜兰, 何平. 生物法降解高氯酸盐及其优化研究[J]. 环境科学, 2009, 30(5):1402-1407)
    [41] XIE Jie, YANG Zhiquan, CHEN Bing. Optimization control of degradation of perchlorate by sulfur autotrophic bacteria[J]. Technol. Water Treat., 2012, 38(6):32-35(谢杰, 杨志泉, 陈兵. 硫自养菌降解还原高氯酸盐的优化控制研究[J]. 水处理技术, 2012, 38(6):32-35)
    [42] WANG Qian, GUO Yankai, NIU Boxian, et al. Study on the affecting factors of perchlorate biodegradation[J]. J. Hebei Univ. Sci. Technol., 2015, 36(06):652-658(王倩, 郭延凯, 牛博贤, 等. 生物降解高氯酸盐的影响因素研究[J]. 河北科技大学学报, 2015, 36(06):652-658)
    [43] CHAUDHURI S K, CONNOR S M, GUSTAVSON R L. Environmental factors that control microbial perchlorate reduction[J]. Appl. Environ. Microbiol., 2002, 68 (12):4425-4430
    [44] SEONG J N, SANG H L, KYUNG-SUK C, et al. Microbial treatment of high-strength perchlorate wastewater[J]. Bioresour. Technol., 2011, 102(2):835-841
    [45] WU Chundu, GUO Jing, XU Xiaohong. Isolation, identification and characterization of perchlorate degrading bacteria[J]. Ecol. Environ. Sci., 2010, 19(2):281-285(吴春笃, 郭静, 许小红. 高氯酸盐降解菌的分离鉴定及特性研究[J]. 生态环境学报, 2010, 19(2):281-285)
    [46] ZHANG Yuanyuan, GUO Yankai, ZHANG Chao. Effect of non-dissolved quinone on perchlorate reduction by strain GWF[J]. Environ. Sci., 2016, 37(03):988-993(张媛媛, 郭延凯, 张超. 非水溶性醌加速菌GWF生物还原高氯酸盐的研究[J]. 环境科学, 2016, 37(03):988-993)
    [47] WANG Yiyi. Sulfur Autotrophic Purification Mechanism of Groundwater Perchlorate and Nitrate Combined Pollution[D]. Henan:Henan University of Technology, 2018(王依依. 地下水高氯酸盐和硝酸盐复合污染的硫自养净化机制[D]. 河南:河南工业大学, 2018)
    [48] YE L, YOU H, YAO J, et al. Water treatment technologies for perchlorate:A review[J]. Desalination, 2012, 298:1-12
    [49] XU J L, TRIMBLE J J, LISA S. Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium dechlorosoma sp. KJ and the chlorate-respiring bacterium pseudomonas sp. PDA[J]. Water Res., 2004, 38(3):673-680
    [50] CLARK I C, MELNYK R A, IAVARONE A T, et al. Chlorate reduction in Shewanella algae ACDC is a recently acquired metabolism characterized by gene loss, suboptimal regulation and oxidative stress[J]. Mol. Microbiol., 2014, 94(1):107-125
    [51] ZHANG yinan, PENG Jing, ZOU Leyang, et al. An overview of planetary protection development[J]. J. Deep Space Explor., 2019, 6(1):3-8(张轶男, 彭兢, 邹乐洋, 等. 国际行星保护发展综述[J]. 深空探测学报, 2019, 6(1):3-8)
    [52] ZHANG Lantao, YANG Hong, YIN Hong, et al. Prevention and control links analysis and implementation suggestions of planetary protection[J]. Spacecr. Eng., 2016, 25(5):105-110(张兰涛, 杨宏, 印红, 等. 行星保护的防控环节分析及实施建议[J]. 航天器工程, 2016, 25(5):105-110)
  • 加载中
计量
  • 文章访问数:  496
  • HTML全文浏览量:  12
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-16
  • 修回日期:  2019-12-28
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回