留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
SHEN Xuhui, ZEREN Zhima, HUANG Jianping, YANG Yanyan, ZHAO Shufan, YAN Rui, ZHANG Zhenxia, LIU Dapeng, WANG Qiao, CHU Wei, LU Hengxin, XU Song, GUO Feng, TAN Qiao, LI Wenjing, ZHOU Na, SONG Fuxi. Current Status and Main Scientific Results of In-flight CSES Mission[J]. 空间科学学报, 2020, 40(5): 662-678. doi: 10.11728/cjss2020.05.662
引用本文: SHEN Xuhui, ZEREN Zhima, HUANG Jianping, YANG Yanyan, ZHAO Shufan, YAN Rui, ZHANG Zhenxia, LIU Dapeng, WANG Qiao, CHU Wei, LU Hengxin, XU Song, GUO Feng, TAN Qiao, LI Wenjing, ZHOU Na, SONG Fuxi. Current Status and Main Scientific Results of In-flight CSES Mission[J]. 空间科学学报, 2020, 40(5): 662-678. doi: 10.11728/cjss2020.05.662
SHEN Xuhui, ZEREN Zhima, HUANG Jianping, YANG Yanyan, ZHAO Shufan, YAN Rui, ZHANG Zhenxia, LIU Dapeng, WANG Qiao, CHU Wei, LU Hengxin, XU Song, GUO Feng, TAN Qiao, LI Wenjing, ZHOU Na, SONG Fuxi. Current Status and Main Scientific Results of In-flight CSES Mission[J]. Journal of Space Science, 2020, 40(5): 662-678. doi: 10.11728/cjss2020.05.662
Citation: SHEN Xuhui, ZEREN Zhima, HUANG Jianping, YANG Yanyan, ZHAO Shufan, YAN Rui, ZHANG Zhenxia, LIU Dapeng, WANG Qiao, CHU Wei, LU Hengxin, XU Song, GUO Feng, TAN Qiao, LI Wenjing, ZHOU Na, SONG Fuxi. Current Status and Main Scientific Results of In-flight CSES Mission[J]. Journal of Space Science, 2020, 40(5): 662-678. doi: 10.11728/cjss2020.05.662

Current Status and Main Scientific Results of In-flight CSES Mission

doi: 10.11728/cjss2020.05.662
基金项目: 

Supported by National Key R&D Program of China (2018YFC1503501), Research Grant from Institute of Crustal Dynamics, China Earthquake Administration (ZDJ2019-22 and ZDJ2020-06) and the APSCO Earthquake Research Project Phase II

详细信息
    作者简介:

    SHEN Xuhui,E-mail:zsf2008bj@126.com

  • 中图分类号: V524;P35

Current Status and Main Scientific Results of In-flight CSES Mission

Funds: 

Supported by National Key R&D Program of China (2018YFC1503501), Research Grant from Institute of Crustal Dynamics, China Earthquake Administration (ZDJ2019-22 and ZDJ2020-06) and the APSCO Earthquake Research Project Phase II

More Information
    Author Bio:

    SHEN Xuhui,E-mail:zsf2008bj@126.com

  • 摘要: The CSES (China Seismo-Electromagnetic Satellite) is the electromagnetism satellite of China's Zhangheng mission which is planned to launch a series of microsatellites within next 10 years in order to monitor the electromagnetic environment, gravitational field. The CSES 01 probe (also called ZH-1) was launched successfully on 2 February 2018, from the Jiuquan Satellite Launch Centre (China) and is expected to operate for 5 years in orbit. The second probe CSES 02 is going to be launched in 2022. The scientific objectives of CSES are to detect the electromagnetic field and waves, plasma and particles, for studying the seismic-associated disturbances. To meet the requirements of scientific objective, the satellite is designed to be in a sun-synchronous orbit with a high inclination of 97.4° at an altitude around 507 km. CSES carries nine scientific payloads including Search-coil magnetometer, Electric Field Detector, High precision Magnetometer, GNSS occultation Receiver, Plasma Analyzer, Langmuir Probe, two Energetic Particle Detectors (including an Italian one), and Tri-Band Transmitter. Up to now, CSES has been operating in orbit for 2 years with stable and reliable performance. By using all kinds of data acquired by CSES, we have undertaken a series of scientific researches in the field of global geomagnetic field re-building, the ionospheric variation environment, waves, and particle precipitations under disturbed space weather and earthquake activities, the Lithosphere-Atmosphere-Ionosphere coupling mechanism research and so on.

     

  • [1] SHEN X, ZONG Q, ZHANG X. Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results[J]. Earth Planet. Phys., 2018, 2(6):439-443
    [2] SHEN X, ZHANG X, YUAN S, et al. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission[J]. Sci. China Technol. Sci., 2018, 61(5):634-642
    [3] CHENG B, ZHOU B, MAGNES W, et al. High precision magnetometer for geomagnetic exploration onboard of the China Seismo-Electromagnetic Satellite[J]. Sci. China Technol. Sci., 2018, 61(5):659-668
    [4] ZHOU B, YANG Y, ZHANG Y, et al. Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite[J]. Earth Planet. Phys., 2018, 2(6):455-461
    [5] POLLINGER A, LAMMEGGER R, MAGNES W, et al. Coupled dark state magnetometer for the China Seismo-Electromagnetic Satellite[J]. Meas. Sci. Technol., 2018, 29(9):095103
    [6] CAO J, ZENG L, ZHAN F, et al. The electromagnetic wave experiment for CSES mission:Search coil magnetometer[J]. Sci. China Technol. Sci., 2018, 61(5):653-658
    [7] HUANG J, SHEN X, ZHANG X, et al. Application system and data description of the China Seismo-Electromagnetic Satellite[J]. Earth Planet. Phys., 2018, 2(6):444-454
    [8] YAN R, GUAN Y, SHEN X, et al. The Langmuir Probe onboard CSES:data inversion analysis method and first results[J]. Earth Planet. Phys., 2018, 2(6):479-488
    [9] LIU C, GUAN Y, ZHENG X, et al. The technology of space plasma in-situ measurement on the China Seismo-Electromagnetic Satellite[J]. Sci. China Technol. Sci., 2019, 62(5):829-838
    [10] CHU W, HUANG J, SHEN X, et al. Preliminary results of the High Energetic Particle Package onboard the China Seismo-Electromagnetic Satellite[J]. Earth Planet. Phys., 2018, 2(6):489-498
    [11] LI X Q, XU Y B, AN Z H, et al. The high-energy particle package onboard CSES[J]. Radiat. Detect. Technol. Methods, 2019, 3(3). DOI: 10.1007/s41605-019-0101-7
    [12] LIN J, SHEN X, HU L, et al. CSES GNSS ionospheric inversion technique, validation and error analysis[J]. Sci. China Technol. Sci., 2018, 61:669-677
    [13] CHEN L, OU M, YUAN Y, et al. Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1[J]. Earth Planet. Phys., 2018, 2(6):505-514
    [14] HULOT G, VIGNERON P, L GER J-M, et al. Swarm's absolute magnetometer experimental vector mode, an innovative capability for space magnetometry[J]. Geophys. Res. Lett., 2015, 42(5):1352-1359
    [15] Finlay C C, Olsen N, Kotsiaros S, et al. Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model[J]. Earth Planets Space, 2016, 68:112
    [16] ZHIMA Z, CAO J, LIU W, et al. Storm time evolution of ELF/VLF waves observed by DEMETER satellite[J]. J. Geophys. Res.:Space Phys., 2014. DOI: 10.1002/2013JA019237
    [17] CHEN L, SANTOL K O, HAJOŠ M, et al. Source of the low-altitude hiss in the ionosphere[J]. Geophys. Res. Lett., 2017. DOI: 10.1002/2016GL072181
    [18] Zeren Zhima, CHEN L, XIONG Y, et al. On the origin of ionospheric hiss:a conjugate observation[J]. J. Geophys. Res.:Space Phys., 2017, 122(11):11784-711793
    [19] PARROT M, SANTOL K O, NĔMEC F. Chorus and chorus-like emissions seen by the ionospheric satellite DEMETER[J]. J. Geophys. Res.:Space Phys., 2016, 121(4):3781-3792
    [20] Zeren Zhima, CAO J, LIU W, et al. DEMETER observations of high-latitude chorus waves penetrating the plasmasphere during a geomagnetic storm[J]. Geophys. Res. Lett., 2013, 40(22):5827-5832
    [21] HAYOSH M, NĚMEC F, SANTOL K O, et al. Propagation properties of quasiperiodic VLF emissions observed by the DEMETER spacecraft[J]. Geophys. Res. Lett., 2016, 43(3):1007-1014
    [22] NĚMEC F, BEZDĚKOV B, MANNINEN J, et al. Conjugate observations of a remarkable quasiperiodic event by the low-altitude DEMETER spacecraft and ground-based instruments[J]. J. Geophys. Res.:Space Phys., 2016, 121(9):8790-8803
    [23] PARROT M, BERTHELIER J, LEBRETON J, et al. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions[J]. Phys. Chem. Earth, 2006, 31(4-9):486-495
    [24] ZHANG Z, CHEN L, LIU S, et al. Chorus acceleration of relativistic electrons in extremely low L-Shell during geomagnetic storm of August 2018[J]. Geophys. Res. Lett., 2020, 47(4). DOI: 10.1029/2019GL086226
    [25] ZHANG Z, CHEN L, LI X, et al. Observed Propagation Route of VLF Transmitter Signals in the Magnetosphere[J]. J. Geophys. Res.:Space Phys., 2018, 123(7):5528-5537
    [26] Zhao Shufan, Liao Li, Zhang Xuemin. Trans-ionspheric VLF wave power absorption of terrestrial VLF signal[J]. Chin. J. Geophys., 2017, 60(8):3004-3014(in Chinese)
    [27] ZHAO S, ZHOU C, SHEN X, et al. Investigation of VLF Transmitter Signals in the Ionosphere by ZH-1 Observations and Full-Wave Simulation[J]. J. Geophys. Res.:Space Phys., 2019, 124(6):4697-4709
    [28] ZHANG Z-X, LI X-Q, WANG C-Y, et al. North west cape-induced electron precipitation and theoretical simulation[J]. Chin. Phys. B, 2016, 25(11):119401
    [29] ZHAO B Q, WANG M, YU T, et al. Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake[J]. J. Geophys. Res.:Space Phys., 2008, 113, A11. DOI: 10.1029/2008JA013613
    [30] LIU J Y, CHEN Y I, PULINETS S A, et al. Seismo-ionospheric signatures prior to M ≥ 6.0 Taiwan earthquakes[J]. Geophys. Res. Lett., 2000, 27(19):3113-3116
    [31] LIU J Y, CHEN Y I, CHEN C H, et al. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake[J]. J. Geophys. Res.:Space Phys., 2009, 114(A4). DOI: 10.1029/2008JA013698
    [32] HAYAKAWA M, KASAHARA Y, NAKAMURA T, et al. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes[J]. J. Geophys. Res.:Space Phys., 2010, 115(A9). DOI: 10.1029/2009JA015143
    [33] LIU J Y, TSAI Y B, CHEN S W, et al. Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004[J]. Geophys. Res. Lett., 2006, 33(2). DOI: 10.1029/2005GL023963
    [34] HAO Y Q, XIAO Z, ZHANG D H. Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake[J]. J. Geophys. Res.:Space Phys., 2012, 117. DOI: 10.1029/2011JA017036
    [35] FREUND F. Pre-earthquake signals:Underlying physical processes[J]. J. Asian Earth Sci., 2011, 41(4/5):383-400
    [36] FREUND F, KULAHCI I G, CYR G, et al. Air ionization at rock surfaces and pre-earthquake signals[J]. J. Atmos. Solar-Terr. Phys., 2009, 71(17/18):1824-1834
    [37] FREUND F, TAKEUCHI A, LAU B W, et al. Stress-Induced Changes in the Electrical Conductivity of Igneous Rocks and the Generation of Ground Currents[J]. Terr. Atmos. Ocean. Sci., 2004, 15(3):437-467
    [38] SOROKIN V M, CHMYREV V M, YASCHENKO A K. Electrodynamic model of the lower atmosphere and the ionosphere coupling[J]. J. Atmos. Solar-Terr. Phys., 2001, 63(16):1681-1691
    [39] KUO C L, HUBA J D, JOYCE G, et al. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges[J]. J. Geophys. Res.:Space Phys., 2011, 116, A10
    [40] KUO C L, LEE L C, HUBA J D. An improved coupling model for the lithosphere-atmosphere-ionosphere system[J]. J. Geophys. Res.:Space Phys., 2014, 119(4):3189-3205
    [41] ZHOU C, LIU Y, ZHAO S F, et al. An electric field penetration model for seismo-ionospheric research[J]. Adv. Space Res., 2017, 60(10):2217-2232
    [42] FREUND F, TAKEUCHI A, LAU B W S. Electric currents streaming out of stressed igneous rocks-A step towards understanding pre-earthquake low frequency EM emissions[J]. Phys. Chem. Earth, 2006, 31(4-9):389-396
    [43] GAO Y X, HARRIS J M, WEN J, et al. Modeling of the coseismic electromagnetic fields observed during the 2004 Mw 6.0 Parkfield earthquake[J]. Geophys. Res. Lett., 2016, 43(2):620-627
    [44] HAYAKAWA M. Probing the lower ionospheric perturbations associated with earthquakes by means of subionospheric VLF/LF propagation[J]. Earthquake Sci., 2011, 24(6):609-637
    [45] NĚMEC F, SANTOLíK O, PARROT M. Possible seismic influence on VLF wave intensity:observations by a low-altitude satellite[C]//WDS'08 Proceedings of Contributed Papers, 2008
    [46] LEHTINEN N G, INAN U S. Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet[J]. J. Geophys. Res., 2008, 113, A06301
    [47] LIAO L, ZHAO S F, SHEN X H, et al. Characteristic analysis and full wave simulation of electrical field for China seismo-electromagnetic satellite observations radiated from VLF transmitter[J]. Chin. J. Geophys., 2019, 62(4):1210-1217
    [48] YANG Y Y, ZHIMA Z R, SHEN X H, et al. The first intense storm event recorded by the China seismo-electromagnetic satellite[J]. Space Weather, 2019. DOI: 10.1029/2019SW002243
    [49] LARKINA V I, MIGULIN V V, MOLCHANOV O A, et al. Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones[J]. Phys. Earth Planet. Int., 1989, 57(1):100-109
    [50] PARROT M. VLF emissions associated with earthquakes and observed in the ionosphere and the magnetosphere[J]. Phys. Earth Planet. Int., 1989, 57(1/2):86-99
    [51] YAN R, SHEN X, HUANG J, et al. Examples of unusual ionospheric observations by the CSES prior to earthquakes[J]. Earth Planet. Phys., 2018, 2(6):515-526
    [52] PULLINETS S, OUZOUNOV D. The Possibility of Earthquake Forecasting[M]. Bristol:IOP Publishing, 2018
    [53] HAYAKAWA M. Electromagnetic phenomena associated with earthquakes:a frontier in terrestrial electromagnetic noise environment[J]. recent res. develop. Geophys., 2004, 6:81-112
  • 加载中
计量
  • 文章访问数:  478
  • HTML全文浏览量:  5
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-31
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回