[1] |
SHEN X, ZONG Q, ZHANG X. Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results[J]. Earth Planet. Phys., 2018, 2(6):439-443
|
[2] |
SHEN X, ZHANG X, YUAN S, et al. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission[J]. Sci. China Technol. Sci., 2018, 61(5):634-642
|
[3] |
CHENG B, ZHOU B, MAGNES W, et al. High precision magnetometer for geomagnetic exploration onboard of the China Seismo-Electromagnetic Satellite[J]. Sci. China Technol. Sci., 2018, 61(5):659-668
|
[4] |
ZHOU B, YANG Y, ZHANG Y, et al. Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite[J]. Earth Planet. Phys., 2018, 2(6):455-461
|
[5] |
POLLINGER A, LAMMEGGER R, MAGNES W, et al. Coupled dark state magnetometer for the China Seismo-Electromagnetic Satellite[J]. Meas. Sci. Technol., 2018, 29(9):095103
|
[6] |
CAO J, ZENG L, ZHAN F, et al. The electromagnetic wave experiment for CSES mission:Search coil magnetometer[J]. Sci. China Technol. Sci., 2018, 61(5):653-658
|
[7] |
HUANG J, SHEN X, ZHANG X, et al. Application system and data description of the China Seismo-Electromagnetic Satellite[J]. Earth Planet. Phys., 2018, 2(6):444-454
|
[8] |
YAN R, GUAN Y, SHEN X, et al. The Langmuir Probe onboard CSES:data inversion analysis method and first results[J]. Earth Planet. Phys., 2018, 2(6):479-488
|
[9] |
LIU C, GUAN Y, ZHENG X, et al. The technology of space plasma in-situ measurement on the China Seismo-Electromagnetic Satellite[J]. Sci. China Technol. Sci., 2019, 62(5):829-838
|
[10] |
CHU W, HUANG J, SHEN X, et al. Preliminary results of the High Energetic Particle Package onboard the China Seismo-Electromagnetic Satellite[J]. Earth Planet. Phys., 2018, 2(6):489-498
|
[11] |
LI X Q, XU Y B, AN Z H, et al. The high-energy particle package onboard CSES[J]. Radiat. Detect. Technol. Methods, 2019, 3(3). DOI: 10.1007/s41605-019-0101-7
|
[12] |
LIN J, SHEN X, HU L, et al. CSES GNSS ionospheric inversion technique, validation and error analysis[J]. Sci. China Technol. Sci., 2018, 61:669-677
|
[13] |
CHEN L, OU M, YUAN Y, et al. Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1[J]. Earth Planet. Phys., 2018, 2(6):505-514
|
[14] |
HULOT G, VIGNERON P, L GER J-M, et al. Swarm's absolute magnetometer experimental vector mode, an innovative capability for space magnetometry[J]. Geophys. Res. Lett., 2015, 42(5):1352-1359
|
[15] |
Finlay C C, Olsen N, Kotsiaros S, et al. Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model[J]. Earth Planets Space, 2016, 68:112
|
[16] |
ZHIMA Z, CAO J, LIU W, et al. Storm time evolution of ELF/VLF waves observed by DEMETER satellite[J]. J. Geophys. Res.:Space Phys., 2014. DOI: 10.1002/2013JA019237
|
[17] |
CHEN L, SANTOL K O, HAJOŠ M, et al. Source of the low-altitude hiss in the ionosphere[J]. Geophys. Res. Lett., 2017. DOI: 10.1002/2016GL072181
|
[18] |
Zeren Zhima, CHEN L, XIONG Y, et al. On the origin of ionospheric hiss:a conjugate observation[J]. J. Geophys. Res.:Space Phys., 2017, 122(11):11784-711793
|
[19] |
PARROT M, SANTOL K O, NĔMEC F. Chorus and chorus-like emissions seen by the ionospheric satellite DEMETER[J]. J. Geophys. Res.:Space Phys., 2016, 121(4):3781-3792
|
[20] |
Zeren Zhima, CAO J, LIU W, et al. DEMETER observations of high-latitude chorus waves penetrating the plasmasphere during a geomagnetic storm[J]. Geophys. Res. Lett., 2013, 40(22):5827-5832
|
[21] |
HAYOSH M, NĚMEC F, SANTOL K O, et al. Propagation properties of quasiperiodic VLF emissions observed by the DEMETER spacecraft[J]. Geophys. Res. Lett., 2016, 43(3):1007-1014
|
[22] |
NĚMEC F, BEZDĚKOV B, MANNINEN J, et al. Conjugate observations of a remarkable quasiperiodic event by the low-altitude DEMETER spacecraft and ground-based instruments[J]. J. Geophys. Res.:Space Phys., 2016, 121(9):8790-8803
|
[23] |
PARROT M, BERTHELIER J, LEBRETON J, et al. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions[J]. Phys. Chem. Earth, 2006, 31(4-9):486-495
|
[24] |
ZHANG Z, CHEN L, LIU S, et al. Chorus acceleration of relativistic electrons in extremely low L-Shell during geomagnetic storm of August 2018[J]. Geophys. Res. Lett., 2020, 47(4). DOI: 10.1029/2019GL086226
|
[25] |
ZHANG Z, CHEN L, LI X, et al. Observed Propagation Route of VLF Transmitter Signals in the Magnetosphere[J]. J. Geophys. Res.:Space Phys., 2018, 123(7):5528-5537
|
[26] |
Zhao Shufan, Liao Li, Zhang Xuemin. Trans-ionspheric VLF wave power absorption of terrestrial VLF signal[J]. Chin. J. Geophys., 2017, 60(8):3004-3014(in Chinese)
|
[27] |
ZHAO S, ZHOU C, SHEN X, et al. Investigation of VLF Transmitter Signals in the Ionosphere by ZH-1 Observations and Full-Wave Simulation[J]. J. Geophys. Res.:Space Phys., 2019, 124(6):4697-4709
|
[28] |
ZHANG Z-X, LI X-Q, WANG C-Y, et al. North west cape-induced electron precipitation and theoretical simulation[J]. Chin. Phys. B, 2016, 25(11):119401
|
[29] |
ZHAO B Q, WANG M, YU T, et al. Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake[J]. J. Geophys. Res.:Space Phys., 2008, 113, A11. DOI: 10.1029/2008JA013613
|
[30] |
LIU J Y, CHEN Y I, PULINETS S A, et al. Seismo-ionospheric signatures prior to M ≥ 6.0 Taiwan earthquakes[J]. Geophys. Res. Lett., 2000, 27(19):3113-3116
|
[31] |
LIU J Y, CHEN Y I, CHEN C H, et al. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake[J]. J. Geophys. Res.:Space Phys., 2009, 114(A4). DOI: 10.1029/2008JA013698
|
[32] |
HAYAKAWA M, KASAHARA Y, NAKAMURA T, et al. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes[J]. J. Geophys. Res.:Space Phys., 2010, 115(A9). DOI: 10.1029/2009JA015143
|
[33] |
LIU J Y, TSAI Y B, CHEN S W, et al. Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004[J]. Geophys. Res. Lett., 2006, 33(2). DOI: 10.1029/2005GL023963
|
[34] |
HAO Y Q, XIAO Z, ZHANG D H. Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake[J]. J. Geophys. Res.:Space Phys., 2012, 117. DOI: 10.1029/2011JA017036
|
[35] |
FREUND F. Pre-earthquake signals:Underlying physical processes[J]. J. Asian Earth Sci., 2011, 41(4/5):383-400
|
[36] |
FREUND F, KULAHCI I G, CYR G, et al. Air ionization at rock surfaces and pre-earthquake signals[J]. J. Atmos. Solar-Terr. Phys., 2009, 71(17/18):1824-1834
|
[37] |
FREUND F, TAKEUCHI A, LAU B W, et al. Stress-Induced Changes in the Electrical Conductivity of Igneous Rocks and the Generation of Ground Currents[J]. Terr. Atmos. Ocean. Sci., 2004, 15(3):437-467
|
[38] |
SOROKIN V M, CHMYREV V M, YASCHENKO A K. Electrodynamic model of the lower atmosphere and the ionosphere coupling[J]. J. Atmos. Solar-Terr. Phys., 2001, 63(16):1681-1691
|
[39] |
KUO C L, HUBA J D, JOYCE G, et al. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges[J]. J. Geophys. Res.:Space Phys., 2011, 116, A10
|
[40] |
KUO C L, LEE L C, HUBA J D. An improved coupling model for the lithosphere-atmosphere-ionosphere system[J]. J. Geophys. Res.:Space Phys., 2014, 119(4):3189-3205
|
[41] |
ZHOU C, LIU Y, ZHAO S F, et al. An electric field penetration model for seismo-ionospheric research[J]. Adv. Space Res., 2017, 60(10):2217-2232
|
[42] |
FREUND F, TAKEUCHI A, LAU B W S. Electric currents streaming out of stressed igneous rocks-A step towards understanding pre-earthquake low frequency EM emissions[J]. Phys. Chem. Earth, 2006, 31(4-9):389-396
|
[43] |
GAO Y X, HARRIS J M, WEN J, et al. Modeling of the coseismic electromagnetic fields observed during the 2004 Mw 6.0 Parkfield earthquake[J]. Geophys. Res. Lett., 2016, 43(2):620-627
|
[44] |
HAYAKAWA M. Probing the lower ionospheric perturbations associated with earthquakes by means of subionospheric VLF/LF propagation[J]. Earthquake Sci., 2011, 24(6):609-637
|
[45] |
NĚMEC F, SANTOLíK O, PARROT M. Possible seismic influence on VLF wave intensity:observations by a low-altitude satellite[C]//WDS'08 Proceedings of Contributed Papers, 2008
|
[46] |
LEHTINEN N G, INAN U S. Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet[J]. J. Geophys. Res., 2008, 113, A06301
|
[47] |
LIAO L, ZHAO S F, SHEN X H, et al. Characteristic analysis and full wave simulation of electrical field for China seismo-electromagnetic satellite observations radiated from VLF transmitter[J]. Chin. J. Geophys., 2019, 62(4):1210-1217
|
[48] |
YANG Y Y, ZHIMA Z R, SHEN X H, et al. The first intense storm event recorded by the China seismo-electromagnetic satellite[J]. Space Weather, 2019. DOI: 10.1029/2019SW002243
|
[49] |
LARKINA V I, MIGULIN V V, MOLCHANOV O A, et al. Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones[J]. Phys. Earth Planet. Int., 1989, 57(1):100-109
|
[50] |
PARROT M. VLF emissions associated with earthquakes and observed in the ionosphere and the magnetosphere[J]. Phys. Earth Planet. Int., 1989, 57(1/2):86-99
|
[51] |
YAN R, SHEN X, HUANG J, et al. Examples of unusual ionospheric observations by the CSES prior to earthquakes[J]. Earth Planet. Phys., 2018, 2(6):515-526
|
[52] |
PULLINETS S, OUZOUNOV D. The Possibility of Earthquake Forecasting[M]. Bristol:IOP Publishing, 2018
|
[53] |
HAYAKAWA M. Electromagnetic phenomena associated with earthquakes:a frontier in terrestrial electromagnetic noise environment[J]. recent res. develop. Geophys., 2004, 6:81-112
|