[1] |
Wang Chi. New chains of space weather monitoring stations in China[J]. Space Weather, 2010, 8, S08001. DOI: 10.1029/2010SW000603
|
[2] |
Hu H Q, Liu E X, Liu R Y, et al. Statistical characteristics of ionospheric backscatter observed by SuperDARN Zhongshan radar in Antarctica[J]. Adv. Polar Sci., 2013, 24:19-31
|
[3] |
Ma Y Z, Zhang Q H, Xing Z Y, et al. The ion/electron temperature characteristics of polar cap classical and hot patches and their influence on ion upflow[J]. Geophys. Res. Lett., 2018, 45. doi.org/10.1029/2018GL079099
|
[4] |
Wang Y, Zhang Q H, Jayachandran P T, et al. Experimental evidence on the dependence of the standard GPS phase scintillation index on the ionospheric plasma drift around noon sector of the polar ionosphere[J]. J. Geophys. Res.:Space Phys., 2018, 123:2370-2378
|
[5] |
MA Y Z, ZHANG Q H, XING Z Y, et al. Combined contribution of solar illumination, solar activity, and convection to ion upflow above the polar cap[J]. J. Geophys. Res.:Space Phys., 2018, 123:4317-4328
|
[6] |
ZHOU C, TANG Q, HUANG F, et al. The simultaneous observations of nighttime ionospheric E region irregularities and F region mediumscale traveling ionospheric disturbances in midlatitude China[J]. J. Geophys. Res.:Space Phys., 2018, 123:5195-5209
|
[7] |
MORO, XU J, DENARDINI J, et al. On the sources of the ionospheric variability in the South American Magnetic Anomaly during solar minimum[J]. J. Geophys. Res.:Space Phys., 2019, 124:7638-7653
|
[8] |
SUN L, XU J, XIONG C, et al. Midlatitudinal special airglow structures generated by the interaction between propagating medium-scale traveling ionospheric disturbance and nighttime plasma density enhancement at magnetically quiet time[J]. Geophys. Res. Lett., 2019, 46:1158-1167
|
[9] |
CHEN G, WANG J, ZHANG S, et al. Opposite latitudinal dependence of the premidnight and postmidnight oscillations in the electron density of midlatitude F layer[J]. J. Geophys. Res.:Space, 2018, 123:796-807
|
[10] |
WU K, XU J, XIONG C, et al. Edge plasma enhancements of equatorial plasma depletions observed by all-sky imager and the C/NOFS satellite[J]. J. Geophys. Res.:Space Phys., 2018, 123:8835-8849
|
[11] |
WANG Z, LIU H, SHI J, et al. Plasma blobs concurrently observed with bubbles in the Asian-Oceanian sector during solar maximum[J]. J. Geophys. Res.:Space Phys., 2019, 124:7062-7071
|
[12] |
YI W, REID I M, XUE X, et al. High- and middle-latitude neutral mesospheric density response to geomagnetic storms[J]. Geophys. Res. Lett., 2018, 45:436-444
|
[13] |
LEI J, HUANG F, CHEN X, et al. Was magnetic storm the only driver of the long-duration enhancements of daytime total electron content in the Asian-Australian sector between 7 and 12 September 2017[J]. J. Geophys. Res.:Space Phys., 2018, 123:3217-3232
|
[14] |
LIU Y, XU J, LIU X, et al. Responses of multiday oscillations in the nighttime thermospheric temperature to solar and geomagnetic activities measured by Fabry-Perot interferometer in China[J]. J. Geophys. Res.:Space Phys., 2019, 124. doi.org/10. 1029/2019JA027237
|
[15] |
MO X H, ZHANG D H. Lunar tidal modulation of periodic meridional movement of equatorial ionization anomaly crest during sudden stratospheric warming[J]. J. Geophys. Res.:Space Phys., 2018, 123:1488-1499
|
[16] |
LIU J, ZHANG D H, HAO Y Q, et al. The comparison of lunar tidal characteristics in the low-latitudinal ionosphere between East Asian and American sectors during stratospheric sudden warming events:2009-2018[J]. J. Geophys. Res.:Space Phys., 2019, 124. doi.org/10.1029/2019JA026722
|
[17] |
LIU G, HUANG W, SHEN H, et al. Ionospheric response to the 2018 sudden stratospheric warming event at middle- and low-latitude stations over China sector[J]. Space Weather, 2019, 17:1230-1240
|
[18] |
HUANG F, OTSUKA Y, LEI J, et al. Daytime periodic wave-like structures in the ionosphere observed at low latitudes over the Asian-Australian sector using total electron content from Beidou geostationary satellites[J]. J. Geophys. Res.:Space Phys., 2019, 124:2312-2322
|
[19] |
YU Bingkun, XUE Xianghui, KUO Chengling, et al. The intensification of metallic layered phenomena above thunderstorms through the modulation of atmospheric tides[J]. Atmos. Chem. Phys. Discuss, 2018. doi.org/10.5194/acp-2018-1025
|
[20] |
LI Q, YUSUPOV K, AKCHURIN A, et al. First OH airglow observation of mesospheric gravity waves over European Russia region[J]. J. Geophys. Res.:Space Phys., 2018, 123:2168-2180
|
[21] |
JIA M, XUE X, GU S, et al. Multiyear observations of gravity wave momentum fluxes in the midlatitude mesosphere and lower thermosphere region by meteor radar[J]. J. Geophys. Res.:Space Phys., 2018, 123:5684-5703
|
[22] |
LI Q, XU J, YUE J, et al. Evolution of a mesospheric bore in a duct observed by ground-based double-layer imagers and satellite observations over the Tibetan Plateau region[J]. J. Geophys. Res.:Space Phys., 2019, 124:1377-1388
|
[23] |
ZHOU X, WAN W, YU Y, et al. New approach to estimate tidal climatology from groundand space-based observations[J]. J. Geophys. Res.:Space Phys., 2018, 123:5087-5101
|
[24] |
GONG Y, LI C, MA Z, et al. Study of the quasi-5-day wave in the MLT region by a meteor radar chain[J]. J. Geophys. Res.:Atmos., 2018, 123:9474-9487
|
[25] |
YU F R, HUANG K M, ZHANG S D, et al. Quasi 10- and 16-day wave activities observed through meteor radar and MST radar during stratospheric final warming in 2015 spring[J]. J. Geophys. Res.:Atmos., 2019, 124. DOI.org/10.1029/2019JD030630
|
[26] |
HUANG K M, XI Y, WANG R, et al. Signature of a quasi 30-day oscillation at midlatitude based on wind observations from MST radar and meteor radar[J]. J. Geophys. Res.:Atmos., 2019, 124. doi.org/10.1029/2019JD031170
|
[27] |
YI W, XUE X, REID I M, et al. Climatology of the mesopause relative density using a global distribution of meteor radars[J]. Atmos. Chem. Phys., 2019, 19(11):7567-7581
|
[28] |
QIU S, SOON W, XUE X, et al. Sudden sodium layers:Their appearance and disappearance[J]. J. Geophys. Res.:Space Phys., 2018, 123:5102-5118
|
[29] |
XUN Y, YANG G, SHE C Y, et al. The first concurrent observations of thermospheric Na layers from two nearby central midlatitude lidar stations[J]. Geophys. Res. Lett., 2019, 46:1892-1899
|
[30] |
Ma Ju, Xue Xianghui, Dou Xiankang, et al. Large-Scale Horizontally Enhanced Sodium Layers Coobserved in the Midlatitude Region of China[J]. J. Geophys. Res.:Space Phys., 2019, 124(9):7614-7628
|
[31] |
JIANG G, XU J, WANG W, et al. A comparison of quiet time thermospheric winds between FPI observations and model calculations[J]. J. Geophys. Res.:Space Phys., 2018, 123:7789-7805
|
[32] |
MA Z, GONG Y, ZHANG S D, et al. Study of mean wind variations and gravity wave forcing via a meteor radar chain and comparison with HWM-07 results[J]. J. Geophys. Res.:Atmos., 2018, 123(17):9488-9501
|
[33] |
Roble R G, Dickinson R E. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere[J] Geophys. Res. Lett., 1989, 16:1144-1441
|
[34] |
YUE X, HU L, WEI Y, et al. Ionospheric trend over Wuhan during 1947-2017:Comparison between simulation and observation[J]. J. Geophys. Res.:Space Phys., 2018, 123:1396-1409
|