留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research Progress of Interplanetary Physics in Mainland China

ZHAO Xinhua SHEN Chenglong HE Jiansen NING Hao

ZHAO Xinhua, SHEN Chenglong, HE Jiansen, NING Hao. Research Progress of Interplanetary Physics in Mainland China[J]. 空间科学学报, 2020, 40(5): 732-777. doi: 10.11728/cjss2020.05.732
引用本文: ZHAO Xinhua, SHEN Chenglong, HE Jiansen, NING Hao. Research Progress of Interplanetary Physics in Mainland China[J]. 空间科学学报, 2020, 40(5): 732-777. doi: 10.11728/cjss2020.05.732
ZHAO Xinhua, SHEN Chenglong, HE Jiansen, NING Hao. Research Progress of Interplanetary Physics in Mainland China[J]. Chinese Journal of Space Science, 2020, 40(5): 732-777. doi: 10.11728/cjss2020.05.732
Citation: ZHAO Xinhua, SHEN Chenglong, HE Jiansen, NING Hao. Research Progress of Interplanetary Physics in Mainland China[J]. Chinese Journal of Space Science, 2020, 40(5): 732-777. doi: 10.11728/cjss2020.05.732

Research Progress of Interplanetary Physics in Mainland China

doi: 10.11728/cjss2020.05.732
基金项目: 

Supported by the B-type Strategic Priority Research Program of Chinese Academy of Sciences (XDB41000000), the National Natural Science Foundation of China (41531073, 41731067, 41861164026, 41874202, 41474153), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2016133) and Chinese Academy of Sciences Research Fund for Key Development Directions

详细信息
    作者简介:

    ZHAO Xinhua,E-mail:xhzhao@spaceweather.ac.cn

  • 中图分类号: P353

Research Progress of Interplanetary Physics in Mainland China

Funds: 

Supported by the B-type Strategic Priority Research Program of Chinese Academy of Sciences (XDB41000000), the National Natural Science Foundation of China (41531073, 41731067, 41861164026, 41874202, 41474153), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2016133) and Chinese Academy of Sciences Research Fund for Key Development Directions

More Information
    Author Bio:

    ZHAO Xinhua,E-mail:xhzhao@spaceweather.ac.cn

  • 摘要: Significant progress has been made by Chinese scientists in research of interplanetary physics during the recent two years (2018-2020). These achievements are reflected at least in the following aspects:Activities in solar corona and lower solar atmosphere; solar wind and turbulence; filament/prominence, jets, flares, and radio bursts; active regions and solar eruptions; coronal mass ejections and their interplanetary counterparts; other interplanetary structures; space weather prediction methods; magnetic reconnection; Magnetohydrodynamic (MHD) numerical modeling; solar energetic particles, cosmic rays, and Forbush decreases; machine learning methods in space weather and other aspects. More than one hundred and forty papers in the academic journals have been published in these research directions. These fruitful achievements are obtained by Chinese scholars in solar physics and space physics either independently or through international collaborations. They greatly improve people's understanding of solar activities, solar eruptions, the corresponding space weather effects, and the Sun-Earth relations. Here we will give a very brief review on the research progress. However, it must be pointed out that this paper may not completely cover all achievements in this field due to our limited knowledge.

     

  • [1] TIAN H, ZHU X S, PETER H, et al. Magnetic reconnection at the earliest stage of solar flux emergence[J]. Astrophys. J., 2018, 854(2):174
    [2] CHEN Y J, TIAN H, PETER H, et al. Flame-like Ellerman bombs and their connection to solar UV bursts[J]. Astrophys. J. Lett., 2019, 875:L30
    [3] SAMANTA T, TIAN H, YURCHYSHYN V, et al. Generation of solar spicules and subsequent atmospheric heating[J]. Science, 2019, 366:890-894
    [4] TIAN H, YURCHYSHYN V, PETER H, et al. Frequently occurring reconnection jets from sunspot light bridges[J]. Astrophys. J., 2018, 854:92
    [5] ZHANG J W, TIAN H, SOLANKI S K, et al. Dark structures in sunspot light bridges[J]. Astrophys. J., 2018, 865:29
    [6] ZHU Y J, KOWALSKI A F, TIAN H, et al. Modeling Mg II h, k and triplet lines at solar flare ribbons[J]. Astrophys. J., 2019, 879:19
    [7] DU G H, CHEN Y, ZHU C M, et al. Formation of large-scale coronal loops interconnecting two active regions through gradual magnetic reconnection and an associated heating process[J]. Astrophys. J., 2018, 860:40
    [8] ZHENG R S, CHEN Y, FENG S W, et al. An extreme-ultraviolet wave generating upward secondary waves in a streamer-like solar structure[J]. Astrophys. J., 2018, 858(1). DOI: 10.3847/2041-8213/aabe87
    [9] ZHENG R S, XUE Z K, CHEN Y, et al. The initial morphologies of the wavefronts of extreme ultraviolet waves[J]. Astrophys. J., 2019, 871(2):9
    [10] CALLY P S, XIONG M. Sensitivity of coronal loop sausage mode frequencies and decay rates to radial and longitudinal density inhomogeneities:a spectral approach[J]. J. Phys. A:Math. Theor., 2018, 51:025501
    [11] RUAN W Z, YAN L M, HE J S, et al. A new method to comprehensively diagnose shock waves in the solar atmosphere based on simultaneous spectroscopic and imaging observations[J]. Astrophys. J., 2018, 860:99
    [12] ZHANG L, HE J S, ZHAO J S, et al. Nature of magnetic holes above ion scales:a mixture of stable slow magnetosonic and unstable mirror modes in a double-polytropicscenario[J]. Astrophys. J., 2018, 864:355
    [13] YANG L P, ZHANG L, He J S, et al. Coexistence of slow-mode and Alfvén-mode waves and structures in 3D compressive MHD turbulence[J]. Astrophys. J., 2018, 866:41
    [14] Song X J, Zuo P B, Feng X S, et al. Abnormal magnetospheric magnetic gradient direction reverse around the indented magnetopause[J]. Astrophys. Space Sci., 2019, 364:146
    [15] Yang L P, Li H, Li S T, et al. Energy occupation of waves and structures in 3D compressive MHD turbulence[J]. Mon. Not. Roy. Astron. Soc., 2019, 488:859-867
    [16] WANG X, TU C Y, HE J S, et al. On the full-range β dependence of ion-scale spectral break in the solar wind turbulence[J]. Astrophys. J., 2018, 857:136
    [17] WANG X, TU C Y, HE J S. 2-D isotropic feature of solar wind turbulence as shown by self-correlation level contours at hours time scales[J]. Astrophys. J., 2019, 871:93
    [18] WANG X, ZHAO L, TU C Y, et al. 2 Alfvenicity of quiet-Sun-associated wind during solar maximum[J]. Astrophys. J., 2019, 871:204
    [19] DUAN D, HE J S, PEI Z T, et al. Angular independence of break position for magnetic power spectral density in solar wind turbulence[J]. Astrophys. J., 2018, 865:89
    [20] HE J S, DUAN D, WANG T Y, et al. Direct measurement of the dissipation rate spectrum around ion kinetic scales in space plasma turbulence[J]. Astrophys. J., 2019, 880:121
    [21] HE J S, WANG Y, SORRISO VALVO L. Unified quantitative description of solar wind turbulence intermittency in both inertial and kinetic ranges[J]. Astrophys. J., 2019, 873:80
    [22] ZHU X Y, HE J S, VERsCHARen d, et al. Composition of wave modes in magnetosheath turbulence from sub-ion to sub-electron scales[J]. Astrophys. J., 2019, 878:48
    [23] Awasthi A K, Liu R, Wang H M, et al. Pre-eruptive magnetic reconnection within a multi-flux-rope system in the solar corona[J]. Astrophys. J., 2018, 857:124
    [24] Su Y N, Liu R, Li S W, et al. High-resolution observations of flares in an arch filament system[J]. Astrophys. J., 2018, 855:77
    [25] Awasthi A K, Liu R, Wang Y M. Double-decker filament configuration revealed by mass motions[J]. Astrophys. J., 2019, 872:109
    [26] Awasthi A K, Liu R. Mass motion in a prominence bubble revealing a kinked flux rope configuration[J]. Front. Phys., 2019, 7:218
    [27] Wang H M, Liu R, Li Q, et al. Extending counter-streaming motion from an active region filament to a sunspot light bridge[J]. Astrophys. J. Lett., 2018, 852:L18
    [28] Liu R,.Chen J, Wang Y M. Disintegration of an eruptive filament via interactions with quasi-separatrix layers[J]. Sci. China:Phys., Mech. Astron., 2018, 61:069611
    [29] Cheng Z X, Wang Y M, Liu R, et al. Plasma motion inside flaring regions revealed by Doppler shift information from SDO/EVE observations[J]. Astrophys. J., 2019, 857:93
    [30] Chen J, Liu R, Liu K, et al. Extreme ultraviolet late phase of solar flares[J]. Astrophys. J., 2020, 890(2):158
    [31] Li X L, Wang Y M, Liu R, et al. Reconstructing solar wind inhomogeneous structures from stereoscopic observations in white-light:small transients along the Sun-Earth line[J]. J. Geophys. Res., 2018, 123:7257-7270
    [32] RUAN G, SCHMIEDER B, MEIN P, et al. On the dynamic nature of a quiescent prominence observed by IRIS and MSDP spectrographs[J]. Astrophys. J., 2018, 865:123
    [33] RUAN G, JEJ I S, SCHMIEDER B, et al. Diagnostics of the prominence plasma from H α and Mg II spectral observations[J]. Astrophys. J., 2019, 886:134
    [34] SONG H Q, ZHOU Z J, LI L P, et al. The reversal of a solar prominence rotation about its ascending direction during a failed eruption[J]. Astrophys. J., 2018, 864:L37
    [35] ZHENG R S, YANG S H, RAO C H, et al. A confined partial eruption of double-decker filaments[J]. Astrophys. J., 2019, 875:71
    [36] ZHENG R S, CHEN Y, HUANG Z H, et al. Two-sided-loop jets associated with magnetic reconnection between emerging loops and twisted filament threads[J]. Astrophys. J., 2018, 861:108
    [37] RUAN G, SCHMIEDER B, MASSON S, et al. Bidirectional reconnection outflows in an active region[J]. Astrophys. J., 2019, 883:52
    [38] NING H, CHEN Y, WU Z, et al. Two-stage energy release process of a confined flare with double HXR peaks[J]. Astrophys. J., 2018, 854:178
    [39] NING H, CHEN Y, LEE J, et al. Broken-up spectra of the loop-top hard X-ray source during a solar limb flare[J]. Res Astron. Astrophys., 2019, 19:173
    [40] KONG X, GUO F, SHEN CC, et al. The acceleration and confinement of energetic electrons by a termination shock in a magnetic trap:an explanation for nonthermal loop-top sources during solar flares[J]. Astrophys. J., 2019, 887:L37
    [41] FENG S W, CHEN Y, LI C Y, et al. Harmonics of solar radio spikes at metric wavelengths[J]. Sol. Phys., 2018, 293:39
    [42] FENG S W. The properties of solar radio spikes with harmonics and the associated EUV brightenings[J]. Astrophys. Space Sci., 2019, 364:4
    [43] VASANTH V, CHEN Y, LV M S, et al. Source imaging of a moving type IV solar radio burst and is role in tracking coronal mass ejection from the inner to the outer corona[J]. Astrophys. J., 2019, 870:30
    [44] LIU H, CHEN Y, CHO K, et al. A solar stationary type IV radio burst and its radiation mechanism[J]. Sol. Phys., 2018, 293:58
    [45] KOVAL A, CHEN Y, STANISLAVSKY A, et al. Simulation of focusing effect of traveling ionospheric disturbances on meter-decameter solar dynamic spectra[J]. J. Geophys. Res.:Space Phys., 2018, 123(11):8940
    [46] KOVAL A, CHEN Y, TSUGAWA T, et al. Direct observations of traveling ionospheric disturbances as focusers of solar radiation:spectral caustics[J]. Astrophys. J., 2019, 877(2):98
    [47] LI C, CHEN Y, KONG X, et al. Effect of the temperature of background plasma and the energy of energetic electrons on Z-mode excitation[J]. Astrophys. J., 2019, 880:31
    [48] WU Z, CHEN Y, NING H, et al. Gyrosynchrotron emission generated by nonthermal electrons with the energy spectra of Na broken power law[J]. Astrophys. J., 2019, 871:22
    [49] LI D, YUAN D, SU Y N, et al. Non-damping oscillations at flaring loops[J]. Astron. Astrophys., 2018, 617:A86
    [50] YUAN D, FENG S, LI D, et al. A compact source for quasi-periodic pulsation in an M-class solar flare[J]. Astrophys. J. Lett, 2019, 886:L25
    [51] ZOU P, JIANG C W, WEI F S, et al. A statistical study of solar filament eruptions that form high-speed coronal mass ejections[J]. Astrophys. J. Lett, 2019, 884:157
    [52] ZOU P, JIANG C W, WEI F S, et al. Continuous null-point magnetic reconnection builds up a Torus unstable magnetic flux rope triggering the X9.3 flare in solar AR12673[J]. Astrophys. J., 2020, 890:10
    [53] SAMANTA T, TIAN H, NAKARIAKOV V M. Evidence for vortex shedding in the Sun's hot corona[J]. Phys. Rev. Lett., 2019, 123:035102
    [54] SONG Y L, TIAN H. Investigation of white-light emission in circular-ribbon flares[J]. Astrophys. J., 2018, 867:159
    [55] Ye Y D, Korsós M B, Erdélyi R. Detailed analysis of dynamic evolution of three Active Regions at the photospheric level before flare and CME occurrence[J]. Adv. Space Res., 2018, 61:673-682
    [56] Wang R, Liu Y D, Hu H D, et al. A solar eruption with relatively strong geoeffectiveness originating from active region peripheral diffusive polarities[J]. Astrophys. J., 2018, 863:81
    [57] Wang R, Liu Y D, Hoeksema J T, et al. Roles of photospheric motions and flux emergence in the major solar eruption on 2017 September 6[J]. Astrophys. J., 2018, 869:90
    [58] Hu H D, Liu Y D, Zhu B, et al. Effects of coronal density and magnetic field distributions on a global solar EUV wave[J]. Astrophys. J., 2019, 878:106
    [59] Wang D, Liu R, Wang Y M, et al. Unraveling the links among sympathetic eruptions[J]. Astrophys. J., 2018, 869:177
    [60] Liu R, Wang Y M, Lee J, et al. Impacts of EUV wavefronts on coronal structures in homologous coronal mass ejections[J]. Astrophys. J., 2019, 870:15
    [61] JIANG C W, FENG X S, HU Q. Formation and eruption of an active region sigmoid. II. Magnetohydrodynamic simulation of a multistage eruption[J]. Astrophys. J., 2018, 866:96
    [62] JIANG C W, ZOU P, FENG X S, et al. Magnetohydrodynamic simulation of the X9.3 flare on 2017 September 6:evolving magnetic topology[J]. Astrophys. J., 2018, 869:13
    [63] JIANG C W, DUAN A Y, FENG X S, et al. Reconstruction of a highly twisted magnetic flux rope for an inter-active-region X-class solar flare[J]. Front. Astron. Space Sci., 2019, 6:63
    [64] DUAN A Y, JIANG C W, HE W, et al. A study of pre-flare solar coronal magnetic fields:magnetic flux ropes[J]. Astrophys. J., 2019, 884:73
    [65] HE W, JIANG C W, ZOU P, et al. Data-driven MHD simulation of the formation and initiation of a large-scale preflare magnetic flux rope in AR 12371[J]. Astrophys. J., 2019, 892:9
    [66] MIAO Y H, LIU Y, ELMHAMDI A, et al. Two quasi-periodic fast-propagating magnetosonic wave events observed in active region NOAA 11167[J]. Astrophys. J., 2020, 889:139
    [67] YUAN D, LIU W, WALSH R. Investigating sub-pixel 45-second periodic wobble in SDO/AIA data from January to August 2012[J]. Sol. Phys., 2018, 293:147
    [68] YUAN D, SHEN Y D, LI H B, et al. Multilayered Kelvin-Helmholtz instability in the solar corona[J]. Astrophys. J. Lett, 2019, 884:L51
    [69] ZOU P, JIANG C W, FENG X S, et al. A two-step magnetic reconnection in a confined X-class flare in solar active region12673[J]. Astrophys. J., 2019, 870:97
    [70] Wang Z H, Feng X S, Zhang J C. Multispacecraft observation of unidirectional and bidirectional Alfvén waves within large-scale magnetic clouds[J]. Astrophys. J. Lett., 2019, 887:L18
    [71] He W, Liu Y D, Hu Y D, et al. A stealth CME bracketed between slow and fast wind producing unexpected geoeffectiveness[J]. Astrophys. J., 2018, 860:78
    [72] Liu M Z, Liu Y D, Yang Z W, et al. Kinetic properties of an interplanetary shock propagating inside a coronal mass ejection[J]. Astrophys. J., 2018, 859:L4
    [73] Chen C, Liu Y D, Wang R, et al. Characteristics of a gradual filament eruption and subsequent CME propagation in relation to a strong geomagnetic storm[J]. Astrophys. J., 2019, 884:90
    [74] Liu Y D, Zhu B, Zhao X W. Geometry, kinematics, and heliospheric impact of a large CME-driven shock in 2017 September[J]. Astrophys. J., 2019, 871:8
    [75] Zhao X W, Liu Y D, Hu H D, et al. Quantifying the propagation of fast coronal mass ejections from the Sun to interplanetary space by combining remote sensing and multi-point in situ observations[J]. Astrophys. J., 2019, 882:122
    [76] Liu Y D, Zhao X W, Hu H D, et al. A comparative study of 2017 July and 2012 July complex eruptions:are solar superstorms "perfect storms" in nature[J]. Astrophys. J., 2019, 241:15
    [77] Gou T Y, Liu R, Kliem B, et al. The birth of a coronal mass ejection[J]. Sci. Adv., 2019, 5:7004
    [78] Liu J J, Wang Y M, Erdelyi R. How many twists do solar coronal jets release[J]. Front. Astron. Space Sci., 2019, 6:44
    [79] Wang W S, Zhu C M, Qiu J, et al. Evolution of a magnetic flux rope toward eruption[J]. Astrophys. J., 2019, 871:25
    [80] Wang Y M, Shen C L, Liu R, et al. Understanding the twist distribution inside magnetic flux ropes by anatomizing an interplanetary magnetic cloud[J]. J. Geophys. Res., 2018, 123:3238-3261
    [81] Zhao A, Wang Y M, Feng H Q, et al. The twist profile in the cross-section of interplanetary magnetic clouds[J]. Astrophys. J. Lett., 2018, 869:L13
    [82] Zhao A, Wang Y M, Feng H Q, et al. The relationship of magnetic twist and plasma motion in a magnetic cloud[J]. Astrophys. J., 2019, 885:122
    [83] Mishra W, Srivastava N, Wang Y M, et al. Mass loss via solar wind and coronal mass ejections during solar cycles 23 and 24[J]. Mon. Notic. Roy. Astron. Soc., 2019, 486(4):4671-4685
    [84] Shen C L, Xu M J, Wang Y M, et al. Why the shock-ICME complex structure is important:Learning from the early 2017 September CMEs[J]. Astrophys. J., 2018, 861:28
    [85] XU M J, SHEN C L, WANG Y M, et al. Importance of shock compression in enhancing ICME's geoeffectiveness[J]. Astrophys. J. Lett., 2019, 884:L30
    [86] XU M J, SHEN C L, CHI Y T, et al. The enhancement of the energetic particle intensities in ICMEs[J]. Astrophys. J., 2019, 885:54
    [87] SONG H Q, CHEN Y, QIU J, et al. The acceleration process of a solar quiescent filament in the inner corona[J]. Astrophys. J., 2018, 857:L21
    [88] SONG H Q, ZHANG J, CHENG X, et al. On the nature of the bright core of solar coronal mass ejections[J]. Astrophys. J., 2019, 883:43
    [89] SONG H Q, ZHANG J, LI L P, et al. The structure of solar coronal mass ejections in the extreme-ultraviolet passbands[J]. Astrophys. J., 2019, 887:124
    [90] ZHOU Z L, ZUO P B, FENG X S, et al. Intermittencies and local heating in magnetic cloud boundary layers[J]. Sol. Phys., 2019, 294:149
    [91] ZHOU Z L, ZUO P B, WEI F S, et al. Intermittent heating in the magnetic cloud sheath regions[J]. Astrophys. J. Lett, 2019, 885:L13
    [92] HUANG J, LIU Y C M, PENG J, et al. The distributions of iron average charge states in small flux ropes in Interplanetary space:clues to their twisted structures[J]. J. Geophys. Res.:Space Phys., 2018, 123(9):7167-7180
    [93] PENG J, LIU Y C M, HUANG J, et al. The warped heliospheric current sheet[J]. J. Geophys. Res.:Space Phys., 2019, 124(12):9814-9823
    [94] LIU Y C M, QI Z H, HUANG J, et al. Unusually low density regions in the compressed slow wind:solar wind transients of small coronal hole origin[J]. Astron. Astrophys., 2020, 635:A49
    [95] ZHANG Q, LIU Y C M, ZHANG Q H, et al. Statistical study of ion upflow associated with Subauroral Polarization Streams (SAPS) at substorm time[J]. Geophys. Res.:Space Phys., 2020, 125(3). DOI: org/10.1029/2019JA027163
    [96] LIU C A, ZHAO X H, CHEN T, et al. Predicting short-term F10.7 with transport models[J]. Astrophys. Space Sci., 2018, 363:266
    [97] QIN G, WU S S.A model of sunspot number with a modified logistic function[J]. Astrophys. J., 2018, 869:48
    [98] Zhou Z L, Wei F S, Feng X S, et al. Observation of interplanetary slow shock pair associated with reconnection exhaust in magnetic cloud boundary layer[J]. Astrophys. J., 2018, 863:84
    [99] Wang Z H, Guo J P, Feng X S, et al. The merging of two stream interaction regions within 1 AU:the possible role of magnetic reconnection[J]. Astrophys. J. Lett., 2018, 869:L6
    [100] Liu C X, Feng X S, Wang M P, Guo J P. Dynamic patterns of self-organization inflow in collisionless magnetic reconnection[J]. Astrophys. Space Sci., 2019, 364:127
    [101] HE J S, ZHU X Y, CHEN Y J, et al. Plasma heating and Alfvénic turbulence enhancement during two steps of energy conversion in magnetic reconnection exhaust region of solar wind[J]. Astrophys. J., 2018, 856:148
    [102] Yang Y, Feng X S, Jiang C W. An upwind CESE scheme for 2D and 3D MHD numerical simulation in general curvilinear coordinates[J]. J. Comput. Phys., 2018, 371:850-869
    [103] Shen F, Yang Z C, Zhang J, et al. Three-Dimensional MHD simulation of solar wind using a new boundary treatment:comparison within situ data at Earth[J]. Astrophys. J., 2018, 866:18
    [104] Li C X, Feng X S, Xiang C Q, et al. Solar coronal modeling by path-conservative HLLEM Riemann solver[J]. Astrophys. J., 2018, 867:42
    [105] Wang Y, Feng X S, Xiang C Q. An effective matrix-free implicit scheme for the magnetohydrodynamic solar wind simulations[J]. Comput. Fluids, 2018, 179:67-77
    [106] Xiong M, Davies J A, Feng X S, et al. Prospective white-light imaging and in situ measurements of quiescent large-scale solar-wind streams from the Parker Solar Probe and Solar Orbiter[J]. Astrophys. J., 2018, 868:137
    [107] Zhang M, Zhou Y F, Feng X S, et al. Numerical study of the reconnection process between magnetic cloud and heliospheric current sheet[J]. Astron. Astrophys., 2018, 619:A82
    [108] Li H C, Feng X S. CESE-HLL magnetic field-driven modeling of the background solar wind during year 2008[J]. J. Geophys. Res.:Space Phys., 2018, 123:4488-4509
    [109] Yang Y, Feng X S, Jiang C W, et al. A study of the emergence of flux rope from the solar convection zone into the atmosphere by using a novel numerical method[J]. Phys. Plasmas, 2018, 25:090702
    [110] Liu C X, Feng X S, Xiang C Q, et al. Hyperbolic cell-centered finite volume method for obtaining potential magnetic field solutions[J]. Astrophys. J., 2019, 887:33
    [111] Hayashi K, Feng X S, Xiong M, et al. Magnetohydrodynamic simulations for solar active regions using time-series data of surface plasma flow and electric field inferred from Helioseismic Magnetic Imager vector magnetic field measurements[J]. Astrophys. J. Lett., 2019, 871:L28
    [112] Wang Y, Feng X S, Zhou Y F, et al. A multi-GPU finite volume solver for magnetohydrodynamics-based solar wind simulations[J]. Comput. Phys. Commun., 2019, 238:181-193
    [113] Feng X S, Liu X J, Xiang C Q, et al. A new MHD model with a rotated-hybrid scheme and solenoidality-preserving approach[J]. Astrophys. J., 2019, 871:226
    [114] Liu C A, Chen T, Zhao X H. New data-driven method of simulating coronal mass ejections[J]. Astron. Astrophys., 2019, 626:A91
    [115] Zhang M, Feng X S, Yang L P. Three-Dimensional MHD simulation of the 2008 December 12 coronal mass ejection:from the Sun to interplanetary space[J]. J. Space Weather Space Clim., 2019, 9:A33
    [116] Liu Y S, Shen F, Yang Y. Numerical simulation on the propagation and deflection of fast coronal mass ejections (CMEs) interacting with a corotating interaction region in interplanetary space[J]. Astrophys. J., 2019, 887:150
    [117] WANG B, CHEN Y, HU Q, et al. A method of forced extrapolation of the global magnetic field in the solar corona[J]. Sci. China Technol. Sci., 2019, 63(2):234
    [118] Lembège B, Yang Z W. Physical roles of interstellar-origin pickup ions at heliospheric termination shock. II. Impact of the front nonstationary on the energy partition and particle velocity distribution[J]. Astrophys. J., 2018, 860:84
    [119] Zhu B, Liu Y D, Kwon R Y, et al. Investigation of energetic particle release using multi-point imaging and in situ observations[J]. Astrophys. J., 2018, 865:138
    [120] Yang Z W, Lu Q M, Liu Y D, et al. Impact of shock front rippling and self-reformation on the electron dynamics at low-Mach-number shocks[J]. Astrophys. J., 2018, 857:36
    [121] Guo J N, Dumbovic M, WIMMER SCHWEINGRUBER R F, et al. Modeling the evolution and propagation of September 2017 CMEs and SEPs arriving at Mars constrained by remote sensing and in situ measurement[J]. Space Weather, 2018, 16:1156-1169
    [122] Guo J N, Zeitlin C, WIMMER SCHWEINGRUBER R F, et al. A generalized approach to model the spectra and radiation dose rate of solar particle events on the surface of Mars[J]. Astrophys. J., 2018, 155:49
    [123] Guo J N, Wimmer Schweingruber R F, Grande M, et al. Ready functions for calculating the Martian radiation environment[J]. J. Space Weather Space Clim., 2019, 9:A7
    [124] Guo J N, Banjac S, RÖSTEL L, et al. Implementation and validation ofthe GEANT4/AtRIS code to model the radiation environment at Mars[J]. J. Space Weather Space Clim., 2019, 9:A2
    [125] Guo J N, Wimmer Schweingruber R F, WANG Y M, et al. The pivot energy of solar energetic particles affecting the Martian surface radiation environment[J]. Astrophys. J. Lett., 2019, 883:L12
    [126] Luo X, Potgieter M S, Zhang, et al. A study of electron Forbush decreases with a 3D SDE numerical model[J]. Astrophys. J., 2018, 860:160
    [127] Wei W W, Shen F, Yang Z C, et al. Modeling solar energetic particle transport in 3D background solar wind:influences of the compression regions[J]. J. Atmos. Sol.:Terr. Phys., 2019, 182:155-164
    [128] Luo X, Potgieter M S, Bindi V, et al. A numerical study of cosmic proton modulation using AMS-02 observations[J]. Astrophys. J., 2019, 878:6
    [129] LI H C, FENG X S, XIANG C Q. Time-dependent simulation and result validation of interplanetary solar wind[J]. Chinese J. Geophys., 2019, 62(1):1-18, 2019
    [130] KONG F G, QIN G, WU S S, et al. Study of time evolution of the bend-over energy in the energetic particle spectrum at a parallel shock[J]. Astrophys. J., 2019, 877:97
    [131] QIN G, KONG F J, ZHANG L H. Effects of shock and turbulence properties on electron acceleration[J]. Astrophys. J., 2018, 860:3
    [132] SHEN Z N, QIN G. Modulation of galactic cosmic rays in the inner heliosphere over solar cycles[J]. Astrophys. J., 2018, 854:137
    [133] SHEN Z N, QIN G, ZUP P B, et al. Modulation of galactic cosmic rays from helium to nickel in the inner heliosphere[J]. Astrophys. J., 2019, 887:132
    [134] WANG J F, QIN G. The diffusion coefficient with displacement variance of energetic particles caused by adiabatic focusing[J]. Astrophys. J., 2019, 886:89
    [135] WANG J F, QIN G. Parallel and perpendicular diffusion coefficients of energetic charged particles with adiabatic focusing[J]. Astrophys. J., 2018, 868:139
    [136] YANG L, BERGER L, ROBERT F, et al. The pitch-angle distributions of suprathermalions near an interplanetary shock[J]. Astrophys. J. Lett., 2020, 888:L22
    [137] YANG L, WANG L H, LI G, et al. Electron acceleration by ICME-driven shocks at 1 AU[J]. Astrophys. J., 2019, 875:140
    [138] YANG L, WANG L H, LI G, et al. The strongest acceleration of >40 keV electrons by ICME-driven shocks at 1 AU[J]. Astrophys. J., 2018, 853:89
    [139] LIU Z X, WANG L H, SHI Q Q, et al. Case study of solar wind suprathermal electron acceleration at the Earth's bow shock[J]. Astrophys. J. Lett., 2020, 889:L2
    [140] Yang Y, Shen F, Yang Z C, et al. Prediction of solar wind speed at 1 AU using an artificialneural network[J]. Space Weather, 2018, 16:1-18
    [141] Ye Y D, Feng X S. Study on geoeffectiveness of interplanetary coronal mass ejections by support vector machine[J]. Chin. J. Space Sci., 2019, 39(3):295-302
    [142] Yang Y, Shen F. Modeling the global distribution of solar wind parameters on the source surface using multiple observations and the artificial neural network technique[J]. Sol. Phys., 2019, 294:111
    [143] LU G, WANG W, YAN F, et al. Large area subwavelength cavity antenna with planar metamaterials[J]. AIP Adv., 2019, 9(2):025032
  • 加载中
计量
  • 文章访问数:  646
  • HTML全文浏览量:  30
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-27
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回