[1] |
TIAN H, ZHU X S, PETER H, et al. Magnetic reconnection at the earliest stage of solar flux emergence[J]. Astrophys. J., 2018, 854(2):174
|
[2] |
CHEN Y J, TIAN H, PETER H, et al. Flame-like Ellerman bombs and their connection to solar UV bursts[J]. Astrophys. J. Lett., 2019, 875:L30
|
[3] |
SAMANTA T, TIAN H, YURCHYSHYN V, et al. Generation of solar spicules and subsequent atmospheric heating[J]. Science, 2019, 366:890-894
|
[4] |
TIAN H, YURCHYSHYN V, PETER H, et al. Frequently occurring reconnection jets from sunspot light bridges[J]. Astrophys. J., 2018, 854:92
|
[5] |
ZHANG J W, TIAN H, SOLANKI S K, et al. Dark structures in sunspot light bridges[J]. Astrophys. J., 2018, 865:29
|
[6] |
ZHU Y J, KOWALSKI A F, TIAN H, et al. Modeling Mg II h, k and triplet lines at solar flare ribbons[J]. Astrophys. J., 2019, 879:19
|
[7] |
DU G H, CHEN Y, ZHU C M, et al. Formation of large-scale coronal loops interconnecting two active regions through gradual magnetic reconnection and an associated heating process[J]. Astrophys. J., 2018, 860:40
|
[8] |
ZHENG R S, CHEN Y, FENG S W, et al. An extreme-ultraviolet wave generating upward secondary waves in a streamer-like solar structure[J]. Astrophys. J., 2018, 858(1). DOI: 10.3847/2041-8213/aabe87
|
[9] |
ZHENG R S, XUE Z K, CHEN Y, et al. The initial morphologies of the wavefronts of extreme ultraviolet waves[J]. Astrophys. J., 2019, 871(2):9
|
[10] |
CALLY P S, XIONG M. Sensitivity of coronal loop sausage mode frequencies and decay rates to radial and longitudinal density inhomogeneities:a spectral approach[J]. J. Phys. A:Math. Theor., 2018, 51:025501
|
[11] |
RUAN W Z, YAN L M, HE J S, et al. A new method to comprehensively diagnose shock waves in the solar atmosphere based on simultaneous spectroscopic and imaging observations[J]. Astrophys. J., 2018, 860:99
|
[12] |
ZHANG L, HE J S, ZHAO J S, et al. Nature of magnetic holes above ion scales:a mixture of stable slow magnetosonic and unstable mirror modes in a double-polytropicscenario[J]. Astrophys. J., 2018, 864:355
|
[13] |
YANG L P, ZHANG L, He J S, et al. Coexistence of slow-mode and Alfvén-mode waves and structures in 3D compressive MHD turbulence[J]. Astrophys. J., 2018, 866:41
|
[14] |
Song X J, Zuo P B, Feng X S, et al. Abnormal magnetospheric magnetic gradient direction reverse around the indented magnetopause[J]. Astrophys. Space Sci., 2019, 364:146
|
[15] |
Yang L P, Li H, Li S T, et al. Energy occupation of waves and structures in 3D compressive MHD turbulence[J]. Mon. Not. Roy. Astron. Soc., 2019, 488:859-867
|
[16] |
WANG X, TU C Y, HE J S, et al. On the full-range β dependence of ion-scale spectral break in the solar wind turbulence[J]. Astrophys. J., 2018, 857:136
|
[17] |
WANG X, TU C Y, HE J S. 2-D isotropic feature of solar wind turbulence as shown by self-correlation level contours at hours time scales[J]. Astrophys. J., 2019, 871:93
|
[18] |
WANG X, ZHAO L, TU C Y, et al. 2 Alfvenicity of quiet-Sun-associated wind during solar maximum[J]. Astrophys. J., 2019, 871:204
|
[19] |
DUAN D, HE J S, PEI Z T, et al. Angular independence of break position for magnetic power spectral density in solar wind turbulence[J]. Astrophys. J., 2018, 865:89
|
[20] |
HE J S, DUAN D, WANG T Y, et al. Direct measurement of the dissipation rate spectrum around ion kinetic scales in space plasma turbulence[J]. Astrophys. J., 2019, 880:121
|
[21] |
HE J S, WANG Y, SORRISO VALVO L. Unified quantitative description of solar wind turbulence intermittency in both inertial and kinetic ranges[J]. Astrophys. J., 2019, 873:80
|
[22] |
ZHU X Y, HE J S, VERsCHARen d, et al. Composition of wave modes in magnetosheath turbulence from sub-ion to sub-electron scales[J]. Astrophys. J., 2019, 878:48
|
[23] |
Awasthi A K, Liu R, Wang H M, et al. Pre-eruptive magnetic reconnection within a multi-flux-rope system in the solar corona[J]. Astrophys. J., 2018, 857:124
|
[24] |
Su Y N, Liu R, Li S W, et al. High-resolution observations of flares in an arch filament system[J]. Astrophys. J., 2018, 855:77
|
[25] |
Awasthi A K, Liu R, Wang Y M. Double-decker filament configuration revealed by mass motions[J]. Astrophys. J., 2019, 872:109
|
[26] |
Awasthi A K, Liu R. Mass motion in a prominence bubble revealing a kinked flux rope configuration[J]. Front. Phys., 2019, 7:218
|
[27] |
Wang H M, Liu R, Li Q, et al. Extending counter-streaming motion from an active region filament to a sunspot light bridge[J]. Astrophys. J. Lett., 2018, 852:L18
|
[28] |
Liu R,.Chen J, Wang Y M. Disintegration of an eruptive filament via interactions with quasi-separatrix layers[J]. Sci. China:Phys., Mech. Astron., 2018, 61:069611
|
[29] |
Cheng Z X, Wang Y M, Liu R, et al. Plasma motion inside flaring regions revealed by Doppler shift information from SDO/EVE observations[J]. Astrophys. J., 2019, 857:93
|
[30] |
Chen J, Liu R, Liu K, et al. Extreme ultraviolet late phase of solar flares[J]. Astrophys. J., 2020, 890(2):158
|
[31] |
Li X L, Wang Y M, Liu R, et al. Reconstructing solar wind inhomogeneous structures from stereoscopic observations in white-light:small transients along the Sun-Earth line[J]. J. Geophys. Res., 2018, 123:7257-7270
|
[32] |
RUAN G, SCHMIEDER B, MEIN P, et al. On the dynamic nature of a quiescent prominence observed by IRIS and MSDP spectrographs[J]. Astrophys. J., 2018, 865:123
|
[33] |
RUAN G, JEJ I S, SCHMIEDER B, et al. Diagnostics of the prominence plasma from H α and Mg II spectral observations[J]. Astrophys. J., 2019, 886:134
|
[34] |
SONG H Q, ZHOU Z J, LI L P, et al. The reversal of a solar prominence rotation about its ascending direction during a failed eruption[J]. Astrophys. J., 2018, 864:L37
|
[35] |
ZHENG R S, YANG S H, RAO C H, et al. A confined partial eruption of double-decker filaments[J]. Astrophys. J., 2019, 875:71
|
[36] |
ZHENG R S, CHEN Y, HUANG Z H, et al. Two-sided-loop jets associated with magnetic reconnection between emerging loops and twisted filament threads[J]. Astrophys. J., 2018, 861:108
|
[37] |
RUAN G, SCHMIEDER B, MASSON S, et al. Bidirectional reconnection outflows in an active region[J]. Astrophys. J., 2019, 883:52
|
[38] |
NING H, CHEN Y, WU Z, et al. Two-stage energy release process of a confined flare with double HXR peaks[J]. Astrophys. J., 2018, 854:178
|
[39] |
NING H, CHEN Y, LEE J, et al. Broken-up spectra of the loop-top hard X-ray source during a solar limb flare[J]. Res Astron. Astrophys., 2019, 19:173
|
[40] |
KONG X, GUO F, SHEN CC, et al. The acceleration and confinement of energetic electrons by a termination shock in a magnetic trap:an explanation for nonthermal loop-top sources during solar flares[J]. Astrophys. J., 2019, 887:L37
|
[41] |
FENG S W, CHEN Y, LI C Y, et al. Harmonics of solar radio spikes at metric wavelengths[J]. Sol. Phys., 2018, 293:39
|
[42] |
FENG S W. The properties of solar radio spikes with harmonics and the associated EUV brightenings[J]. Astrophys. Space Sci., 2019, 364:4
|
[43] |
VASANTH V, CHEN Y, LV M S, et al. Source imaging of a moving type IV solar radio burst and is role in tracking coronal mass ejection from the inner to the outer corona[J]. Astrophys. J., 2019, 870:30
|
[44] |
LIU H, CHEN Y, CHO K, et al. A solar stationary type IV radio burst and its radiation mechanism[J]. Sol. Phys., 2018, 293:58
|
[45] |
KOVAL A, CHEN Y, STANISLAVSKY A, et al. Simulation of focusing effect of traveling ionospheric disturbances on meter-decameter solar dynamic spectra[J]. J. Geophys. Res.:Space Phys., 2018, 123(11):8940
|
[46] |
KOVAL A, CHEN Y, TSUGAWA T, et al. Direct observations of traveling ionospheric disturbances as focusers of solar radiation:spectral caustics[J]. Astrophys. J., 2019, 877(2):98
|
[47] |
LI C, CHEN Y, KONG X, et al. Effect of the temperature of background plasma and the energy of energetic electrons on Z-mode excitation[J]. Astrophys. J., 2019, 880:31
|
[48] |
WU Z, CHEN Y, NING H, et al. Gyrosynchrotron emission generated by nonthermal electrons with the energy spectra of Na broken power law[J]. Astrophys. J., 2019, 871:22
|
[49] |
LI D, YUAN D, SU Y N, et al. Non-damping oscillations at flaring loops[J]. Astron. Astrophys., 2018, 617:A86
|
[50] |
YUAN D, FENG S, LI D, et al. A compact source for quasi-periodic pulsation in an M-class solar flare[J]. Astrophys. J. Lett, 2019, 886:L25
|
[51] |
ZOU P, JIANG C W, WEI F S, et al. A statistical study of solar filament eruptions that form high-speed coronal mass ejections[J]. Astrophys. J. Lett, 2019, 884:157
|
[52] |
ZOU P, JIANG C W, WEI F S, et al. Continuous null-point magnetic reconnection builds up a Torus unstable magnetic flux rope triggering the X9.3 flare in solar AR12673[J]. Astrophys. J., 2020, 890:10
|
[53] |
SAMANTA T, TIAN H, NAKARIAKOV V M. Evidence for vortex shedding in the Sun's hot corona[J]. Phys. Rev. Lett., 2019, 123:035102
|
[54] |
SONG Y L, TIAN H. Investigation of white-light emission in circular-ribbon flares[J]. Astrophys. J., 2018, 867:159
|
[55] |
Ye Y D, Korsós M B, Erdélyi R. Detailed analysis of dynamic evolution of three Active Regions at the photospheric level before flare and CME occurrence[J]. Adv. Space Res., 2018, 61:673-682
|
[56] |
Wang R, Liu Y D, Hu H D, et al. A solar eruption with relatively strong geoeffectiveness originating from active region peripheral diffusive polarities[J]. Astrophys. J., 2018, 863:81
|
[57] |
Wang R, Liu Y D, Hoeksema J T, et al. Roles of photospheric motions and flux emergence in the major solar eruption on 2017 September 6[J]. Astrophys. J., 2018, 869:90
|
[58] |
Hu H D, Liu Y D, Zhu B, et al. Effects of coronal density and magnetic field distributions on a global solar EUV wave[J]. Astrophys. J., 2019, 878:106
|
[59] |
Wang D, Liu R, Wang Y M, et al. Unraveling the links among sympathetic eruptions[J]. Astrophys. J., 2018, 869:177
|
[60] |
Liu R, Wang Y M, Lee J, et al. Impacts of EUV wavefronts on coronal structures in homologous coronal mass ejections[J]. Astrophys. J., 2019, 870:15
|
[61] |
JIANG C W, FENG X S, HU Q. Formation and eruption of an active region sigmoid. II. Magnetohydrodynamic simulation of a multistage eruption[J]. Astrophys. J., 2018, 866:96
|
[62] |
JIANG C W, ZOU P, FENG X S, et al. Magnetohydrodynamic simulation of the X9.3 flare on 2017 September 6:evolving magnetic topology[J]. Astrophys. J., 2018, 869:13
|
[63] |
JIANG C W, DUAN A Y, FENG X S, et al. Reconstruction of a highly twisted magnetic flux rope for an inter-active-region X-class solar flare[J]. Front. Astron. Space Sci., 2019, 6:63
|
[64] |
DUAN A Y, JIANG C W, HE W, et al. A study of pre-flare solar coronal magnetic fields:magnetic flux ropes[J]. Astrophys. J., 2019, 884:73
|
[65] |
HE W, JIANG C W, ZOU P, et al. Data-driven MHD simulation of the formation and initiation of a large-scale preflare magnetic flux rope in AR 12371[J]. Astrophys. J., 2019, 892:9
|
[66] |
MIAO Y H, LIU Y, ELMHAMDI A, et al. Two quasi-periodic fast-propagating magnetosonic wave events observed in active region NOAA 11167[J]. Astrophys. J., 2020, 889:139
|
[67] |
YUAN D, LIU W, WALSH R. Investigating sub-pixel 45-second periodic wobble in SDO/AIA data from January to August 2012[J]. Sol. Phys., 2018, 293:147
|
[68] |
YUAN D, SHEN Y D, LI H B, et al. Multilayered Kelvin-Helmholtz instability in the solar corona[J]. Astrophys. J. Lett, 2019, 884:L51
|
[69] |
ZOU P, JIANG C W, FENG X S, et al. A two-step magnetic reconnection in a confined X-class flare in solar active region12673[J]. Astrophys. J., 2019, 870:97
|
[70] |
Wang Z H, Feng X S, Zhang J C. Multispacecraft observation of unidirectional and bidirectional Alfvén waves within large-scale magnetic clouds[J]. Astrophys. J. Lett., 2019, 887:L18
|
[71] |
He W, Liu Y D, Hu Y D, et al. A stealth CME bracketed between slow and fast wind producing unexpected geoeffectiveness[J]. Astrophys. J., 2018, 860:78
|
[72] |
Liu M Z, Liu Y D, Yang Z W, et al. Kinetic properties of an interplanetary shock propagating inside a coronal mass ejection[J]. Astrophys. J., 2018, 859:L4
|
[73] |
Chen C, Liu Y D, Wang R, et al. Characteristics of a gradual filament eruption and subsequent CME propagation in relation to a strong geomagnetic storm[J]. Astrophys. J., 2019, 884:90
|
[74] |
Liu Y D, Zhu B, Zhao X W. Geometry, kinematics, and heliospheric impact of a large CME-driven shock in 2017 September[J]. Astrophys. J., 2019, 871:8
|
[75] |
Zhao X W, Liu Y D, Hu H D, et al. Quantifying the propagation of fast coronal mass ejections from the Sun to interplanetary space by combining remote sensing and multi-point in situ observations[J]. Astrophys. J., 2019, 882:122
|
[76] |
Liu Y D, Zhao X W, Hu H D, et al. A comparative study of 2017 July and 2012 July complex eruptions:are solar superstorms "perfect storms" in nature[J]. Astrophys. J., 2019, 241:15
|
[77] |
Gou T Y, Liu R, Kliem B, et al. The birth of a coronal mass ejection[J]. Sci. Adv., 2019, 5:7004
|
[78] |
Liu J J, Wang Y M, Erdelyi R. How many twists do solar coronal jets release[J]. Front. Astron. Space Sci., 2019, 6:44
|
[79] |
Wang W S, Zhu C M, Qiu J, et al. Evolution of a magnetic flux rope toward eruption[J]. Astrophys. J., 2019, 871:25
|
[80] |
Wang Y M, Shen C L, Liu R, et al. Understanding the twist distribution inside magnetic flux ropes by anatomizing an interplanetary magnetic cloud[J]. J. Geophys. Res., 2018, 123:3238-3261
|
[81] |
Zhao A, Wang Y M, Feng H Q, et al. The twist profile in the cross-section of interplanetary magnetic clouds[J]. Astrophys. J. Lett., 2018, 869:L13
|
[82] |
Zhao A, Wang Y M, Feng H Q, et al. The relationship of magnetic twist and plasma motion in a magnetic cloud[J]. Astrophys. J., 2019, 885:122
|
[83] |
Mishra W, Srivastava N, Wang Y M, et al. Mass loss via solar wind and coronal mass ejections during solar cycles 23 and 24[J]. Mon. Notic. Roy. Astron. Soc., 2019, 486(4):4671-4685
|
[84] |
Shen C L, Xu M J, Wang Y M, et al. Why the shock-ICME complex structure is important:Learning from the early 2017 September CMEs[J]. Astrophys. J., 2018, 861:28
|
[85] |
XU M J, SHEN C L, WANG Y M, et al. Importance of shock compression in enhancing ICME's geoeffectiveness[J]. Astrophys. J. Lett., 2019, 884:L30
|
[86] |
XU M J, SHEN C L, CHI Y T, et al. The enhancement of the energetic particle intensities in ICMEs[J]. Astrophys. J., 2019, 885:54
|
[87] |
SONG H Q, CHEN Y, QIU J, et al. The acceleration process of a solar quiescent filament in the inner corona[J]. Astrophys. J., 2018, 857:L21
|
[88] |
SONG H Q, ZHANG J, CHENG X, et al. On the nature of the bright core of solar coronal mass ejections[J]. Astrophys. J., 2019, 883:43
|
[89] |
SONG H Q, ZHANG J, LI L P, et al. The structure of solar coronal mass ejections in the extreme-ultraviolet passbands[J]. Astrophys. J., 2019, 887:124
|
[90] |
ZHOU Z L, ZUO P B, FENG X S, et al. Intermittencies and local heating in magnetic cloud boundary layers[J]. Sol. Phys., 2019, 294:149
|
[91] |
ZHOU Z L, ZUO P B, WEI F S, et al. Intermittent heating in the magnetic cloud sheath regions[J]. Astrophys. J. Lett, 2019, 885:L13
|
[92] |
HUANG J, LIU Y C M, PENG J, et al. The distributions of iron average charge states in small flux ropes in Interplanetary space:clues to their twisted structures[J]. J. Geophys. Res.:Space Phys., 2018, 123(9):7167-7180
|
[93] |
PENG J, LIU Y C M, HUANG J, et al. The warped heliospheric current sheet[J]. J. Geophys. Res.:Space Phys., 2019, 124(12):9814-9823
|
[94] |
LIU Y C M, QI Z H, HUANG J, et al. Unusually low density regions in the compressed slow wind:solar wind transients of small coronal hole origin[J]. Astron. Astrophys., 2020, 635:A49
|
[95] |
ZHANG Q, LIU Y C M, ZHANG Q H, et al. Statistical study of ion upflow associated with Subauroral Polarization Streams (SAPS) at substorm time[J]. Geophys. Res.:Space Phys., 2020, 125(3). DOI: org/10.1029/2019JA027163
|
[96] |
LIU C A, ZHAO X H, CHEN T, et al. Predicting short-term F10.7 with transport models[J]. Astrophys. Space Sci., 2018, 363:266
|
[97] |
QIN G, WU S S.A model of sunspot number with a modified logistic function[J]. Astrophys. J., 2018, 869:48
|
[98] |
Zhou Z L, Wei F S, Feng X S, et al. Observation of interplanetary slow shock pair associated with reconnection exhaust in magnetic cloud boundary layer[J]. Astrophys. J., 2018, 863:84
|
[99] |
Wang Z H, Guo J P, Feng X S, et al. The merging of two stream interaction regions within 1 AU:the possible role of magnetic reconnection[J]. Astrophys. J. Lett., 2018, 869:L6
|
[100] |
Liu C X, Feng X S, Wang M P, Guo J P. Dynamic patterns of self-organization inflow in collisionless magnetic reconnection[J]. Astrophys. Space Sci., 2019, 364:127
|
[101] |
HE J S, ZHU X Y, CHEN Y J, et al. Plasma heating and Alfvénic turbulence enhancement during two steps of energy conversion in magnetic reconnection exhaust region of solar wind[J]. Astrophys. J., 2018, 856:148
|
[102] |
Yang Y, Feng X S, Jiang C W. An upwind CESE scheme for 2D and 3D MHD numerical simulation in general curvilinear coordinates[J]. J. Comput. Phys., 2018, 371:850-869
|
[103] |
Shen F, Yang Z C, Zhang J, et al. Three-Dimensional MHD simulation of solar wind using a new boundary treatment:comparison within situ data at Earth[J]. Astrophys. J., 2018, 866:18
|
[104] |
Li C X, Feng X S, Xiang C Q, et al. Solar coronal modeling by path-conservative HLLEM Riemann solver[J]. Astrophys. J., 2018, 867:42
|
[105] |
Wang Y, Feng X S, Xiang C Q. An effective matrix-free implicit scheme for the magnetohydrodynamic solar wind simulations[J]. Comput. Fluids, 2018, 179:67-77
|
[106] |
Xiong M, Davies J A, Feng X S, et al. Prospective white-light imaging and in situ measurements of quiescent large-scale solar-wind streams from the Parker Solar Probe and Solar Orbiter[J]. Astrophys. J., 2018, 868:137
|
[107] |
Zhang M, Zhou Y F, Feng X S, et al. Numerical study of the reconnection process between magnetic cloud and heliospheric current sheet[J]. Astron. Astrophys., 2018, 619:A82
|
[108] |
Li H C, Feng X S. CESE-HLL magnetic field-driven modeling of the background solar wind during year 2008[J]. J. Geophys. Res.:Space Phys., 2018, 123:4488-4509
|
[109] |
Yang Y, Feng X S, Jiang C W, et al. A study of the emergence of flux rope from the solar convection zone into the atmosphere by using a novel numerical method[J]. Phys. Plasmas, 2018, 25:090702
|
[110] |
Liu C X, Feng X S, Xiang C Q, et al. Hyperbolic cell-centered finite volume method for obtaining potential magnetic field solutions[J]. Astrophys. J., 2019, 887:33
|
[111] |
Hayashi K, Feng X S, Xiong M, et al. Magnetohydrodynamic simulations for solar active regions using time-series data of surface plasma flow and electric field inferred from Helioseismic Magnetic Imager vector magnetic field measurements[J]. Astrophys. J. Lett., 2019, 871:L28
|
[112] |
Wang Y, Feng X S, Zhou Y F, et al. A multi-GPU finite volume solver for magnetohydrodynamics-based solar wind simulations[J]. Comput. Phys. Commun., 2019, 238:181-193
|
[113] |
Feng X S, Liu X J, Xiang C Q, et al. A new MHD model with a rotated-hybrid scheme and solenoidality-preserving approach[J]. Astrophys. J., 2019, 871:226
|
[114] |
Liu C A, Chen T, Zhao X H. New data-driven method of simulating coronal mass ejections[J]. Astron. Astrophys., 2019, 626:A91
|
[115] |
Zhang M, Feng X S, Yang L P. Three-Dimensional MHD simulation of the 2008 December 12 coronal mass ejection:from the Sun to interplanetary space[J]. J. Space Weather Space Clim., 2019, 9:A33
|
[116] |
Liu Y S, Shen F, Yang Y. Numerical simulation on the propagation and deflection of fast coronal mass ejections (CMEs) interacting with a corotating interaction region in interplanetary space[J]. Astrophys. J., 2019, 887:150
|
[117] |
WANG B, CHEN Y, HU Q, et al. A method of forced extrapolation of the global magnetic field in the solar corona[J]. Sci. China Technol. Sci., 2019, 63(2):234
|
[118] |
Lembège B, Yang Z W. Physical roles of interstellar-origin pickup ions at heliospheric termination shock. II. Impact of the front nonstationary on the energy partition and particle velocity distribution[J]. Astrophys. J., 2018, 860:84
|
[119] |
Zhu B, Liu Y D, Kwon R Y, et al. Investigation of energetic particle release using multi-point imaging and in situ observations[J]. Astrophys. J., 2018, 865:138
|
[120] |
Yang Z W, Lu Q M, Liu Y D, et al. Impact of shock front rippling and self-reformation on the electron dynamics at low-Mach-number shocks[J]. Astrophys. J., 2018, 857:36
|
[121] |
Guo J N, Dumbovic M, WIMMER SCHWEINGRUBER R F, et al. Modeling the evolution and propagation of September 2017 CMEs and SEPs arriving at Mars constrained by remote sensing and in situ measurement[J]. Space Weather, 2018, 16:1156-1169
|
[122] |
Guo J N, Zeitlin C, WIMMER SCHWEINGRUBER R F, et al. A generalized approach to model the spectra and radiation dose rate of solar particle events on the surface of Mars[J]. Astrophys. J., 2018, 155:49
|
[123] |
Guo J N, Wimmer Schweingruber R F, Grande M, et al. Ready functions for calculating the Martian radiation environment[J]. J. Space Weather Space Clim., 2019, 9:A7
|
[124] |
Guo J N, Banjac S, RÖSTEL L, et al. Implementation and validation ofthe GEANT4/AtRIS code to model the radiation environment at Mars[J]. J. Space Weather Space Clim., 2019, 9:A2
|
[125] |
Guo J N, Wimmer Schweingruber R F, WANG Y M, et al. The pivot energy of solar energetic particles affecting the Martian surface radiation environment[J]. Astrophys. J. Lett., 2019, 883:L12
|
[126] |
Luo X, Potgieter M S, Zhang, et al. A study of electron Forbush decreases with a 3D SDE numerical model[J]. Astrophys. J., 2018, 860:160
|
[127] |
Wei W W, Shen F, Yang Z C, et al. Modeling solar energetic particle transport in 3D background solar wind:influences of the compression regions[J]. J. Atmos. Sol.:Terr. Phys., 2019, 182:155-164
|
[128] |
Luo X, Potgieter M S, Bindi V, et al. A numerical study of cosmic proton modulation using AMS-02 observations[J]. Astrophys. J., 2019, 878:6
|
[129] |
LI H C, FENG X S, XIANG C Q. Time-dependent simulation and result validation of interplanetary solar wind[J]. Chinese J. Geophys., 2019, 62(1):1-18, 2019
|
[130] |
KONG F G, QIN G, WU S S, et al. Study of time evolution of the bend-over energy in the energetic particle spectrum at a parallel shock[J]. Astrophys. J., 2019, 877:97
|
[131] |
QIN G, KONG F J, ZHANG L H. Effects of shock and turbulence properties on electron acceleration[J]. Astrophys. J., 2018, 860:3
|
[132] |
SHEN Z N, QIN G. Modulation of galactic cosmic rays in the inner heliosphere over solar cycles[J]. Astrophys. J., 2018, 854:137
|
[133] |
SHEN Z N, QIN G, ZUP P B, et al. Modulation of galactic cosmic rays from helium to nickel in the inner heliosphere[J]. Astrophys. J., 2019, 887:132
|
[134] |
WANG J F, QIN G. The diffusion coefficient with displacement variance of energetic particles caused by adiabatic focusing[J]. Astrophys. J., 2019, 886:89
|
[135] |
WANG J F, QIN G. Parallel and perpendicular diffusion coefficients of energetic charged particles with adiabatic focusing[J]. Astrophys. J., 2018, 868:139
|
[136] |
YANG L, BERGER L, ROBERT F, et al. The pitch-angle distributions of suprathermalions near an interplanetary shock[J]. Astrophys. J. Lett., 2020, 888:L22
|
[137] |
YANG L, WANG L H, LI G, et al. Electron acceleration by ICME-driven shocks at 1 AU[J]. Astrophys. J., 2019, 875:140
|
[138] |
YANG L, WANG L H, LI G, et al. The strongest acceleration of >40 keV electrons by ICME-driven shocks at 1 AU[J]. Astrophys. J., 2018, 853:89
|
[139] |
LIU Z X, WANG L H, SHI Q Q, et al. Case study of solar wind suprathermal electron acceleration at the Earth's bow shock[J]. Astrophys. J. Lett., 2020, 889:L2
|
[140] |
Yang Y, Shen F, Yang Z C, et al. Prediction of solar wind speed at 1 AU using an artificialneural network[J]. Space Weather, 2018, 16:1-18
|
[141] |
Ye Y D, Feng X S. Study on geoeffectiveness of interplanetary coronal mass ejections by support vector machine[J]. Chin. J. Space Sci., 2019, 39(3):295-302
|
[142] |
Yang Y, Shen F. Modeling the global distribution of solar wind parameters on the source surface using multiple observations and the artificial neural network technique[J]. Sol. Phys., 2019, 294:111
|
[143] |
LU G, WANG W, YAN F, et al. Large area subwavelength cavity antenna with planar metamaterials[J]. AIP Adv., 2019, 9(2):025032
|